Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 1, Number 1, October 2007
Page(s) 39 - 48
Published online 12 December 2007
  1. J.L. Zapico, M.P. Gonzalez, D.H. Bassir, “Model identification of small-scale bridge using a genetic algorithm with parallel selection", in Proceedings of The Tenth International Conference on Civil, Structural and Environmental Engineering Computing, B.H.V. Topping, (Editor), Civil-Comp Press, Stirling, United Kingdom, paper 248, 2005 [Google Scholar]
  2. R.T. Severn, Proceedings of the Institution of Civil Engineers Structures & Bridges, European experimental research in earthquake engineering for Eurocode 8 (1999) 134: 205–217 [Google Scholar]
  3. V.A. Pinto, Pseudo-dynamic and shaking table tests on RC bridges. Report No 5, ECOEST & PREC8, 1996 [Google Scholar]
  4. V.A. Pinto, G. Verzeletti, P. Pegon, G. Magonette, P. Negro, J. Guedes, Pseudo-dynamic testing of large-scale R/C bridges, Report EUR 16378 EN, ELSA, Ispra, Italy, 1996 [Google Scholar]
  5. J.L. Zapico, M.P. González, M.I. Friswell, C.A. Taylor, A.J. Crewe, Finite Element Model Updating of a Small Scale Bridge. Journal of Sound and Vibration 268, 993–1012 (2003) [CrossRef] [Google Scholar]
  6. FEMA-355E., State of the art report on past performance of steel moment-frame buildings in earthquakes. Federal Emergency Management Agency, Washington, DC, 2000 [Google Scholar]
  7. M. Nakashima, K. Inoue, M. Tada, Classification of damage to steel buildings observer in the 1995 Hyogoken-Nambu earthquake. Engineering Structures 20, 271–281 (1998) [CrossRef] [Google Scholar]
  8. S.A. Mahin, Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures 20, 261–270 (1998) [CrossRef] [Google Scholar]
  9. FEMA-350., Recommended seismic design criteria for new steel moment-frame buildings, Federal Emergency Management Agency, Washington, DC, 2000 [Google Scholar]
  10. D.V. Val, F. Segal, Effect of damping model on pre-yielding response of structures. Engineering Structures 27, 1968–1980 (2005) [CrossRef] [Google Scholar]
  11. D.H. Bassir, S. Carbillet, L.M. Boubakar, Algorithme génétique à sélection parallèle. Revue des Composites et Matériaux avancés 15, 53–70 (2005) [CrossRef] [Google Scholar]
  12. J.H. Holland, Adaptation in natural and artificial systems, Ann Arbor: University of Michigan Press (1975) [Google Scholar]
  13. D.E. Goldberg, Genetic algorithms in search, optimisation, and machine learning, New York: Addison-Wesley (1989) [Google Scholar]
  14. L. Ljung, System Identification. New Jersey: Prentice Hall PTR (1999) [Google Scholar]
  15. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution, Springer-Verlag, Heidelberg (1994) [Google Scholar]
  16. C.A.C. Coello, Use of the self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000) [CrossRef] [Google Scholar]
  17. C.Z. Janikow, Z. Michalewicz, An experimental comparison of binary and floating point representation in genetic algorithms, Proc. of the Fourth Int. Conference on genetic algorithms, R. Belew, L.B. Booker (Eds), (Morgan Kaufmman, San Mateo), 31-36, 1991. [Google Scholar]
  18. K.A. DeJong, WM. Spears, An analysis of the interacting roles of population size and crossover in genetic algorithms, Proc., First workshop parallel problem solving from nature, Springer-Verlag, Berling, 38–47, 1990 [Google Scholar]
  19. A. Wright, Genetic algorithms for real parameter optimization. Foundations of genetic algorithms 1, G.J.E. Rawlin (Ed.) (Morgan Kaufmman, San Mateo), 205–218 (1991) [Google Scholar]
  20. K. Deb, S. Gulati, Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37, 447–465 (2001) [CrossRef] [Google Scholar]
  21. K. Sastry, U.M. O'Reilly, D.E. Goldberg, Population sizing for genetic programming based upon decision making, IlliGAL, Report N. 2004028, April 2004 [Google Scholar]
  22. K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Systems, 115–148 (1995) [Google Scholar]
  23. K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic function optimization, in: J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic Algorithms (Morgan Kauffman, San Mateo), 42–50, 1989 [Google Scholar]
  24. K. Deb, H.G. Beyer, Self-Adaptive genetic algorithms with simulated binary crossover, Technical Report No. CI-61/99, March 1999, Department of Computer Science/XI University of Dortmund, 44221 Dortmund, Germany [Google Scholar]
  25. E.C. Paz, D.E. Goldberg, Efficient parallel genetic algorithms: theory and practice. Comput. Method. Appl. M. 186, 221–238 (2000) [CrossRef] [Google Scholar]
  26. N.J. Roudcliffe, Non linear genetic representations parallel problem solving from nature 2, R. Männer, B. Manderick (Ed.) Elsevier Science Publishers, Amsterdam, 259–268 (1992) [Google Scholar]
  27. C.A.C. Coello, E.M. Montes, Constraint handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Informatics 16, 193–203 (2002) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.