Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 1, Number 1, October 2007
Page(s) 39 - 48
DOI https://doi.org/10.1051/ijsmdo:2007005
Published online 12 December 2007
  1. J.L. Zapico, M.P. Gonzalez, D.H. Bassir, “Model identification of small-scale bridge using a genetic algorithm with parallel selection", in Proceedings of The Tenth International Conference on Civil, Structural and Environmental Engineering Computing, B.H.V. Topping, (Editor), Civil-Comp Press, Stirling, United Kingdom, paper 248, 2005
  2. R.T. Severn, Proceedings of the Institution of Civil Engineers Structures & Bridges, European experimental research in earthquake engineering for Eurocode 8 (1999) 134: 205–217
  3. V.A. Pinto, Pseudo-dynamic and shaking table tests on RC bridges. Report No 5, ECOEST & PREC8, 1996
  4. V.A. Pinto, G. Verzeletti, P. Pegon, G. Magonette, P. Negro, J. Guedes, Pseudo-dynamic testing of large-scale R/C bridges, Report EUR 16378 EN, ELSA, Ispra, Italy, 1996
  5. J.L. Zapico, M.P. González, M.I. Friswell, C.A. Taylor, A.J. Crewe, Finite Element Model Updating of a Small Scale Bridge. Journal of Sound and Vibration 268, 993–1012 (2003) [CrossRef]
  6. FEMA-355E., State of the art report on past performance of steel moment-frame buildings in earthquakes. Federal Emergency Management Agency, Washington, DC, 2000
  7. M. Nakashima, K. Inoue, M. Tada, Classification of damage to steel buildings observer in the 1995 Hyogoken-Nambu earthquake. Engineering Structures 20, 271–281 (1998) [CrossRef]
  8. S.A. Mahin, Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures 20, 261–270 (1998) [CrossRef]
  9. FEMA-350., Recommended seismic design criteria for new steel moment-frame buildings, Federal Emergency Management Agency, Washington, DC, 2000
  10. D.V. Val, F. Segal, Effect of damping model on pre-yielding response of structures. Engineering Structures 27, 1968–1980 (2005) [CrossRef]
  11. D.H. Bassir, S. Carbillet, L.M. Boubakar, Algorithme génétique à sélection parallèle. Revue des Composites et Matériaux avancés 15, 53–70 (2005) [CrossRef]
  12. J.H. Holland, Adaptation in natural and artificial systems, Ann Arbor: University of Michigan Press (1975)
  13. D.E. Goldberg, Genetic algorithms in search, optimisation, and machine learning, New York: Addison-Wesley (1989)
  14. L. Ljung, System Identification. New Jersey: Prentice Hall PTR (1999)
  15. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution, Springer-Verlag, Heidelberg (1994)
  16. C.A.C. Coello, Use of the self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000) [CrossRef]
  17. C.Z. Janikow, Z. Michalewicz, An experimental comparison of binary and floating point representation in genetic algorithms, Proc. of the Fourth Int. Conference on genetic algorithms, R. Belew, L.B. Booker (Eds), (Morgan Kaufmman, San Mateo), 31-36, 1991.
  18. K.A. DeJong, WM. Spears, An analysis of the interacting roles of population size and crossover in genetic algorithms, Proc., First workshop parallel problem solving from nature, Springer-Verlag, Berling, 38–47, 1990
  19. A. Wright, Genetic algorithms for real parameter optimization. Foundations of genetic algorithms 1, G.J.E. Rawlin (Ed.) (Morgan Kaufmman, San Mateo), 205–218 (1991)
  20. K. Deb, S. Gulati, Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37, 447–465 (2001) [CrossRef]
  21. K. Sastry, U.M. O'Reilly, D.E. Goldberg, Population sizing for genetic programming based upon decision making, IlliGAL, Report N. 2004028, April 2004
  22. K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Systems, 115–148 (1995)
  23. K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic function optimization, in: J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic Algorithms (Morgan Kauffman, San Mateo), 42–50, 1989
  24. K. Deb, H.G. Beyer, Self-Adaptive genetic algorithms with simulated binary crossover, Technical Report No. CI-61/99, March 1999, Department of Computer Science/XI University of Dortmund, 44221 Dortmund, Germany
  25. E.C. Paz, D.E. Goldberg, Efficient parallel genetic algorithms: theory and practice. Comput. Method. Appl. M. 186, 221–238 (2000) [CrossRef]
  26. N.J. Roudcliffe, Non linear genetic representations parallel problem solving from nature 2, R. Männer, B. Manderick (Ed.) Elsevier Science Publishers, Amsterdam, 259–268 (1992)
  27. C.A.C. Coello, E.M. Montes, Constraint handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Informatics 16, 193–203 (2002) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.