Issue |
Int. J. Simul. Multisci. Des. Optim.
Volume 5, 2014
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/smdo/2013014 | |
Published online | 26 February 2014 |
Article
A location optimization method for aircraft weakly-rigid structures
The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, 710072
Xi’an, Shaanxi, P.R. China
* e-mail: yangyuan0824@mail.nwpu.edu.cn
Received:
23
June
2013
Accepted:
23
October
2013
Since aircraft weakly-rigid structure has large size and weak stiffness, there has serious deformation during assembly process. The current deformation analysis theory of rigid assembly is not applicable. Based on the N-2-1 (N > 3) locating principle, this paper presents a methodology for weakly-rigid parts. An optimization algorithm combines finite element analysis and nonlinear programming methods to find the optimal number and position of the locating points in order to minimize the assembly deformation. An example application study is presented to demonstrate the optimization procedure and its effectiveness by using the software of ABAQUS.
Key words: Weakly-rigid structures / N-2-1 Locating principle / Location optimization / ABAQUS
© Z.-Q. Wang et al., Published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.