Issue |
Int. J. Simul. Multisci. Des. Optim.
Volume 5, 2014
|
|
---|---|---|
Article Number | A19 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/smdo/2013020 | |
Published online | 10 March 2014 |
Article
Numerical study of water and heat transfer in unsaturated clay-loam soil
Mouloud Mammeri University, L.M.S.E. Laboratory, PO Box 17, RP 15000, Tizi-Ouzou, Algeria
* e-mail: lamrous_nacer@yahoo.fr
Received:
12
June
2013
Accepted:
13
November
2013
This present study is the numerical estimation of the temperature distribution and the water content distribution underground soil under the Mediterranean climate type. We use as input data of ambient temperature, air humidity and solar radiation, average values during 10 years estimated from data supplied by the local meteorological station (Tizi-Ouzou, Northern Algeria, 36°47′59″, North latitude and 4°1′59″, East longitude). A theoretical model, based on heat and water transfer equations, was established for an unsaturated soil submitted to the climatic conditions of this site. The mathematical model established in mono dimensional type, for a semi infinite transfer model, is based on Whitaker theory of heat and mass transfers in unsaturated porous medium (Withaker 1977, 1980) with the hypothesis that air pressure into soil porosity is equal to atmospheric pressure. The equations were discretized according to the finite volume method, which is more adapted for this type of problem, and were solved by the Newton-Raphson iterative method in the environment of Matlab software. The simulations have been done for two typical days (January 15 and May 15). Curves of temperature and water content evolutions in term of depth and time were obtained.
Key words: Heat and mass transfer / Soil temperature / Unsaturated porous soil / Simulation
© N. Lamrous et al., Published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.