Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
Multi-modal Information Learning and Analytics on Cross-Media Data Integration
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/smdo/2025010 | |
Published online | 18 July 2025 |
- A. Bakar Maharani, A. Juliansyah, R. Thalib, D.A. Pratama, High performances of stabilized Lanczos-types for solving high dimension problems: a survey[J], Comput. Sci. 16, 837–854 (2021) [Google Scholar]
- J. Panda, S. Meher, An improved image interpolation technique using OLA e-spline[J], Egypt. Inform. J. 23, 159–172 (2022) [Google Scholar]
- M. Ameen Musa, A.M. Ashir, M.S. Anwar, Diffraction-based ringing suppression in image deblurring[J], Solid State Technol. 64, 3305–3313 (2021) [Google Scholar]
- A. Acharya, S. Meher, Iterative spatial domain 2-D signal decomposition for effectual image up-scaling[J], Multimed. Tools Appl. 80, 5577–5616 (2021) [Google Scholar]
- R. Lan, L. Sun, Z. Liu, H. Lu, Z. Su, C. Pang et al., Cascading and enhanced residual networks for accurate single-image super-resolution[J], IEEE Trans. Cybern. 51, 115–125 (2020) [Google Scholar]
- M. Pharr, B. Wronski, M. Salvi, M. Fajardo, Filtering after shading with stochastic texture filtering[J], Proc. ACM Comput. Graphics Interact. Techniq. 7, 1–20 (2024) [Google Scholar]
- L. Bai, Y. Li, Z. Zhou, Visualization pipeline of autonomous driving scenes based on FCCR-3D reconstruction[J], J. Electron. Imag. 31, 033023–033023 (2022) [Google Scholar]
- M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projectinetworks for single image super-resolution[J], IEEE Trans. Pattern Anal. Mach. Intell. 43, 4323–4337 (2020) [Google Scholar]
- Y. Chen, R. Xia, K. Yang, K. Zou, MFFN: image super-resolution via multi-level features fusion network[J], Vis. Comput. 40, 489–504 (2024) [Google Scholar]
- Y. Fu, Q. Yan, J. Liao, H. Zhou, J. Tang, C. Xiao, Seamless texture optimization for RGB-D reconstruction[J], IEEE Trans. Vis. Comput. Graph. 29, 1845–1859 (2021) [Google Scholar]
- K. Aarizou, A. Loukil, Self-similarity single image super-resolution based on blur kernel estimation for texture reconstruction[J], Int. J. Comput. Sci. Eng. 25, 64–73 (2022) [Google Scholar]
- W. Liu, P. Zhang, Y. Lei, X. Huang, J. Yang, M. Ng, A generalized framework for edge-preserving and structure-preserving image smoothing[J], IEEE Trans. Pattern Anal. Mach. Intell. 44, 6631–6648 (2021) [Google Scholar]
- R. Soundrapandiyan, S.C. Satapathy, C.M. Pvssr, N.G. Nhu, A comprehensive survey on image enhancement techniques with special emphasis on infrared images[J], Multimed. Tools Appl. 81, 9045–9077 (2022) [Google Scholar]
- Y. Wang, X. Li, F. Nan, F. Liu, H. Li, H. Wang et al., Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms[J], Multimed. Tools Appl. 81, 6633–6652 (2022) [Google Scholar]
- A.-C. Tsai, C.-H. Tsou, J.-F. Wang, EESRGAN: Efficient & effective super-resolution generative adversarial network[J], IETE Tech. Rev. 41, 200–211 (2024) [Google Scholar]
- W. Zhang, Y. Wang, C. Li, Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement[J], IEEE J. Ocean. Eng. 47, 718–735 (2022) [Google Scholar]
- S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang et al., Learning enriched features for fast image restoration and enhancement[J], IEEE Trans. Pattern Anal. Mach. Intell. 45, 1934–1948 (2022) [Google Scholar]
- S. Yang, X. Wang, Sparse representation and SRCNN based spatio-temporal information fusion method of multi-sensor remote sensing data[J], J. Netw. Intell. 6, 40–53 (2021) [Google Scholar]
- J. Khandelwal, V.K. Sharma, W-VDSR: Wavelet-based secure image transmission using machine learning VDSR neural network[J], Multimed. Tools Appl. 82, 42147–42172 (2023) [Google Scholar]
- J. Daihong, Z. Sai, D. Lei, D. Yueming, Multi-scale generative adversarial network for image super-resolution[J], Soft. Comput. 26, 3631–3641 (2022) [Google Scholar]
- P. Wang, H. Zhu, H. Huang, H. Zhang, N. Wang, TMS-GAN: A twofold multi-scale generative adversarial network for single image dehazing[J], IEEE Trans. Circ. Syst. Video Technol. 32, 2760–2772 (2021) [Google Scholar]
- R. Abbas, N. Gu, Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model[J], Soft. Comput. 27, 16041–16057 (2023) [Google Scholar]
- Z. Tang, T. Zhang, Y. Du, J. Su, Individual identification method of little sample radiation source based on SGDCGAN+ DCNN[J], IET Commun. 17, 253–264 (2023) [Google Scholar]
- B. Rasti, Y. Chang, E. Dalsasso, L. Denis, P. Ghamisi, Image restoration for remote sensing: Overview and toolbox[J], IEEE Geosci. Remote Sens. Mag. 10, 201–230 (2021) [Google Scholar]
- D.Nh. Thanh, Vb.S. Prasath, L.M. Hieu, S. Dvoenko, An adaptive method for image restoration based on high-order total variation and inverse gradient[J], Signal Image Video Process. 14, 1189–1197 (2020) [Google Scholar]
- F. Fang, J. Li, Y. Yuan, T. Zeng, G. Zhang, Multilevel edge features guided network for image denoising[J], IEEE Trans. Neural Netw. Learn. Syst. 32, 3956–3970 (2020) [Google Scholar]
- X. Chen, S. Zhan, D. Ji, L. Xu, C. Wu, X. Li, Image denoising via deep network based on edge enhancement[J], J. Ambient Intell. Humaniz. Comput. 14, 14795–14805 (2023) [Google Scholar]
- S. Izadi, D. Sutton, G. Hamarneh, Image denoising in the deep learning era[J], Artif. Intell. Rev. 56, 5929–5974 (2023) [Google Scholar]
- R.S. Jebur, M.H.B.M. Zabil, D.A. Hammood, L.K. Cheng, A comprehensive review of image denoising in deep learning[J], Multimed. Tools Appl. 83, 58181–58199 (2024) [Google Scholar]
- M. Kumar, S.K. Mishra, A comprehensive review on nature inspired neural network based adaptive filter for eliminating noise in medical images[J], Curr. Med. Imag. 16, 278–287 (2020) [Google Scholar]
- Y. Qiu, Y. Yang, Z. Lin, P. Chen, Y. Luo, W. Huang, Improved denoising autoencoder for maritime image denoising and semantic segmentation of USV[J], China Commun. 17, 46–57 (2020) [Google Scholar]
- S. Yadav, S.K. Saha, R. Kar, D. Mandal, Noise confiscation from sEMG through enhanced adaptive filtering based on evolutionary computing[J], Circuits Syst. Signal Process. 42, 4096–4128 (2023) [Google Scholar]
- S. Zhang, H. Liu, M. Hu, A. Jiang, L. Zhang, F. Xu et al., An adaptive CEEMDAN thresholding denoising method optimized by nonlocal means algorithm[J], IEEE Trans. Instrum. Meas. 69, 6891–6903 (2020) [Google Scholar]
- Z. Bao, G. Zhang, B. Xiong, S. Gai, New image denoising algorithm using monogenic wavelet transform and improved deep convolutional neural network[J], Multimed. Tools Appl. 79, 7401–7412 (2020) [Google Scholar]
- J.A. Iglesias-Guitian, P. Mane, B. Moon, Real-time denoising of volumetric path tracing for direct volume rendering[J], IEEE Trans. Vis. Comput. Graph. 28, 2734–2747 (2020) [Google Scholar]
- J. Liu, B. Hui, K. Li, Y. Liu, Y.-K. Lai, Y. Zhang et al., Geometry-guided dense perspective network for speech-driven facial animation[J], IEEE Trans. Vis. Comput. Graph. 28, 4873–4886 (2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.