Open Access
Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/smdo/2025002 | |
Published online | 06 February 2025 |
- J.-Y. Huang, H. Xu, E. Peretz, D.-Y. Wu, C.K. Ober, T. Hanrath, Three-dimensional printing of hierarchical porous architectures, Chem. Mater. 31, 10017–10022 (2019) [CrossRef] [Google Scholar]
- D.-S. Shim, J.-Y. Seo, H.-S. Yoon, K.-Y. Lee, W.-J. Oh, Additive manufacturing of porous metals using laser melting of Ti6Al4V powder with a foaming agent, Mater. Res. Express 5 (2018), 10.1088/2053-1591/aad117 [Google Scholar]
- J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46, 559–632 (2001) [CrossRef] [Google Scholar]
- J. Li, X. Cui, G.J. Hooper, K.S. Lim, T.B.F. Woodfield, Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: a review, J. Mech. Behav. Biomed. Mater. 105, 103671 (2020) [CrossRef] [Google Scholar]
- M. Zhang, Y. Yang, D. Wang, C. Song, J. Chen, Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting, Mater. Des. 165, 107583 (2019) [CrossRef] [Google Scholar]
- Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater. 113, 56–67 (2016) [CrossRef] [Google Scholar]
- M. Kaur, S.M. Han, W.S. Kim, Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications, MRS Commun. 7, 8–19 (2017) [CrossRef] [Google Scholar]
- R. Stamp, P. Fox, W. O'Neill, E. Jones, C. Sutcliffe, The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting, J. Mater. Sci. Mater. Med. 20, 1839–1848 (2009) [CrossRef] [Google Scholar]
- S. Li, H. Zhang, S. Li, J. Wang, Q. Wang, Z. Cheng, Advances in hierarchically porous materials: fundamentals, preparation and applications, Renew. Sustain. Energy Rev. 202, 114641 (2024) [CrossRef] [Google Scholar]
- C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, M. Wang, 3D printing of bone tissue engineering scaffolds, Bioact Mater, 5, 82–91 (2020) [Google Scholar]
- A.S. Neto, J.M.F. Ferreira, Synthetic and marine-derived porous scaffolds for bone tissue engineering, Materials (Basel) 11 (2018), doi:10.3390/ma11091702 [Google Scholar]
- Y. Wang, Y. Shen, Z. Wang, J. Yang, N. Liu, W. Huang, Development of highly porous titanium scaffolds by selective laser melting, Mater. Lett. 64, 674–676 (2010) [CrossRef] [Google Scholar]
- V.S. Moxson, F.H. Froes, Fabricating sports equipment components via powder metallurgy. JOM 53, 39–41 (2001) [CrossRef] [Google Scholar]
- A.-h. Yu, W. Xu, X. Lu, M. Tamaddon, B.−w. Liu, S.−w. Tian, C.−z. Liu, Development and characterizations of graded porous titanium scaffolds via selective laser melting for orthopedics applications, Trans. Nonferrous Metals Soc. China 33, 1755–1767 (2023) [Google Scholar]
- J. Li, L. Zhou, Z. Li, Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer's solution, Rare Metals 29, 37–44 (2010) [CrossRef] [Google Scholar]
- S. Bahl, S. Suwas, K. Chatterjee, Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials, Int. Mater. Rev. 66, 114–139 (2020) [Google Scholar]
- C.N. Kelly, N.T. Evans, C.W. Irvin, S.C. Chapman, K. Gall, D.L. Safranski, The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting, Mater. Sci. Eng. C Mater. Biol. Appl. 98, 726–736 (2019) [CrossRef] [Google Scholar]
- Y. Okazaki, A new Ti-15Zr-4Nb-4Ta alloy for medical applications, Curr. Opin. Solid State Mater. Sci. 5, 45–53 (2001) [CrossRef] [Google Scholar]
- H. Wang, N. Eliaz, Z. Xiang, H.-P. Hsu, M. Spector, L.W. Hobbs, Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy, Biomaterials 27, 4192–4203 (2006) [CrossRef] [Google Scholar]
- D. Gu, Y. Shen, Processing conditions and microstructural features of porous 316L stainless steel components by DMLS, Appl. Surf. Sci. 255, 1880–1887 (2008) [CrossRef] [Google Scholar]
- A. El-Fiqi, Three-dimensional printing of biomaterials for bone tissue engineering: a review, Front. Mater. Sci. 17, 230644 (2023) [Google Scholar]
- X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials 83, 127–141 (2016) [CrossRef] [Google Scholar]
- T.M. Shick, A.Z. Abdul Kadir, N.H.A. Ngadiman, A. Ma'aram, A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering, J. Bioactive Compatible Polym. 34, 415–435 (2019) [CrossRef] [Google Scholar]
- T.J. Horn, O.L. Harrysson, Overview of current additive manufacturing technologies and selected applications, Sci. Prog. 95, 255–282 (2012) [CrossRef] [Google Scholar]
- G. Gong, J. Ye, Y. Chi, Z. Zhao, Z. Wang, G. Xia, C. Chen, Research status of laser additive manufacturing for metal: a review, J. Mater. Res. Technol. 15, 855–884 (2021) [CrossRef] [Google Scholar]
- J. Babilotte, V. Guduric, D. Le Nihouannen, A. Naveau, J.C. Fricain, S. Catros, 3D printed polymer-mineral composite biomaterials for bone tissue engineering: fabrication and characterization, J. Biomed. Mater. Res. B Appl. Biomater. 107, 2579–2595 (2019) [CrossRef] [Google Scholar]
- R. Hedayati, S. Janbaz, M. Sadighi, M. Mohammadi-Aghdam, A.A. Zadpoor, How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials? J. Mech. Behav. Biomed. Mater. 65, 831–841 (2017) [CrossRef] [Google Scholar]
- X. Li, C.T. Wang, W.G. Zhang, Y.C. Li, Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application, Proc. Inst. Mech. Eng. H 223, 173–178 (2009) [CrossRef] [Google Scholar]
- C. Lee, D. Jeong, S. Yoon, J. Kim, Porous three-dimensional scaffold generation for 3D printing, Mathematics 8 (2020), doi:10.3390/math8060946 [Google Scholar]
- V. Weißmann, R. Bader, H. Hansmann, N. Laufer, Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds, Mater. Des. 95, 188–197 (2016) [CrossRef] [Google Scholar]
- C. Aguilar, C. Salvo, J. Henriquez, D. Vega, I. Alonso, L. Muñoz, Computational analysis of the graded porosity distribution on the elastic modulus of Ti foams, Mater. Today Commun. 35, 106391 (2023) [CrossRef] [Google Scholar]
- The mechanical properties of natural materials. I. Material property charts, Proc. Royal Soc. London. Ser. A 450, 123–140 (1997) [Google Scholar]
- S. Liang, Review of the design of titanium alloys with low elastic modulus as implant materials, Adv. Eng. Mater. 22 (2020), doi:10.1002/adem.202000555 [CrossRef] [Google Scholar]
- Y. Alex, S. Vincent, N. Divakaran, U.T. Uthappa, P. Srinivasan, S. Mubarak, D. Dhamodharan, Pioneering bone regeneration: a review of cutting-edge scaffolds in tissue engineering, Bioprinting 43 (2024), doi:10.1016/j.bprint.2024.e00364 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.