Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 14, 2023
Article Number 15
Number of page(s) 8
Published online 04 December 2023
  1. W. Wu, L. Wang, G. Huang, H. Zhang, W. Cheng, H. Wang, K.S. Shin, Effect of multi-pass continuous screw twist extrusion process on microstructure evolution, texture, and mechanical properties of AZ31 magnesium alloy, Mater. Today Commun. 34, 105508 (2023) [CrossRef] [Google Scholar]
  2. A. Asgari, H. Delavar, M. Sedighi, Microstructure and surface integrity of machined AZ91 magnesium alloy, J. Mater. Res. Technol. 22, 735–746 (2023) [CrossRef] [Google Scholar]
  3. L. Govind Sanjeev Kumar, D. Thirumalaikumarasamy, K. Karthikeyan, M. Mathanbabu, M. Ashokkumar, C.S. Ramachandran, An overview of recent trends and challenges of post treatments on magnesium alloys, Mater. Today: Proc. 78, 700–707 (2023) [CrossRef] [Google Scholar]
  4. J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, F. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloys 10, 863–898 (2022) [CrossRef] [Google Scholar]
  5. M. Ebrahimi, Q. Wang, S. Attarilar, A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques, Prog. Mater. Sci. 131, 101016 (2023) [CrossRef] [Google Scholar]
  6. J. Kubásek, P. Minárik, K. Hosová, S. Šašek, M. Knapek, J. Veselý, J. Stráská, D. Dvorský, M. Čavojský, D. Vojtěch, Novel magnesium alloy containing Y, Gd and Ca with enhanced ignition temperature and mechanical properties for aviation applications, J. Alloys Compd. 877, 160089 (2021) [CrossRef] [Google Scholar]
  7. G.G. Wang, J.P. Weiler, Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications, J. Magnes. Alloys 11, 78–87 (2022) [Google Scholar]
  8. C. Xue, S. Li, Z. Chu, Q. Yang, Y. Li, L. Ma, L. Tuo, Molecular dynamics study on the effect of temperature on HCP→FCC phase transition of magnesium alloy, J. Magnes. Alloys (2022) doi:10.1016/j.jma.2022.03.013 [Google Scholar]
  9. D. Arola, C.L. Williams CL, Estimating the fatigue stress concentration factor of machined surfaces, Int. J. Fatigue 24, 923–930 (2002) [CrossRef] [Google Scholar]
  10. M. Hareendran, S. Sreejith, A study on surface quality of thin-walled machined parts, Mater. Today: Proc. 5, 18730–18738 (2018) [CrossRef] [Google Scholar]
  11. D. Mingxia, G. Chunhuan, S. Qianfei, J. Fengchun, L. Liyu, L. Jifeng, X. De, L. Chuanming, S. Haolun, Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment, Mater. Sci. Eng. A 857, 144044 (2022) [CrossRef] [Google Scholar]
  12. A. Rodriguez, L.N.L. de Lacalle, O. Pereira, A. Fernandez, I. Ayesta, Isotropic finishing of austempered iron casting cylindrical parts by roller burnishing, Int. J. Adv. Manuf. Technol. 110, 753–761 (2020) [CrossRef] [Google Scholar]
  13. S. Prithivirajan, G.M. Naik, S. Narendranath, V. Desai, Recent progress in equal channel angular pressing of magnesium alloys starting from Segal's idea to advancements till date − A review, Int. J. Lightweight Mater. Manuf. 6, 82–107 (2023) [Google Scholar]
  14. P. Snopiński, Exploring microstructure refinement and deformation mechanisms in severely deformed LPBF AlSi10Mg alloy, J. Alloys Compd. 941, 168984 (2023) [CrossRef] [Google Scholar]
  15. Y.-j. Chen, Q.-d. Wang, J.-b. Lin, M.-p. Liu, J. Hjelen, H.J. Roven, Grain refinement of magnesium alloys processed by severe plastic deformation, Trans. Nonferrous Met. Soc. China 24, 3747–3754 (2014) [CrossRef] [Google Scholar]
  16. G. Vignesh, D. Barik, S. Aravind, P. Ragupathi, M. Arun, Numerical investigation of dimple-texturing on the turning performance of hardened AISI H-13 steel, Int. J. Simul. Multidiscip. Des. Optim. 13, 639–651 (2021) [Google Scholar]
  17. R. Naseri, M. Kadkhodayan, M. Shariati, Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process, Trans. Nonferrous Met. Soc. China 27, 1964–1975 (2017) [CrossRef] [Google Scholar]
  18. Z. Yang, A. Ma, H. Liu, D. Song, Y. Wu, Y. Yuan, J. Jiang, J. Sun, Managing strength and ductility in AZ91 magnesium alloy through ECAP combined with prior and post aging treatment, Mater. Charact. 152, 213–222 (2019) [CrossRef] [Google Scholar]
  19. A. Awasthi, A. Gupta, K.K. Saxena, R.K. Diwedi, Equal channel angular processing on aluminium and its alloys − A review, Mater. Today: Proc. 56, 2388–2391 (2022) [CrossRef] [Google Scholar]
  20. M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, P. Hedström, Microstructure and superplasticity of Mg-2Gd-xZn alloys processed by equal channel angular pressing, Mater. Sci. Eng. : A 808, 140921 (2021) [CrossRef] [Google Scholar]
  21. X. Zhang, Y. Cheng, Tensile anisotropy of AZ91 magnesium alloy by equal channel angular processing, J. Alloys Compd. 622, 1105–1109 (2015) [CrossRef] [Google Scholar]
  22. S. Xu, G. Zhao, X. Ma, G. Ren, Nite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials, J. Mater. Process. Technol. 184, 209–216 (2007) [CrossRef] [Google Scholar]
  23. T. He, Y. Xiong, F. Ren, Z. Guo, A.A. Volinsky, Microstructure of ultra-fine-grained high carbon steel prepared by equal channel angular pressing, Mater. Sci. Eng.: A 535, 306–310 (2012) [CrossRef] [Google Scholar]
  24. J.L. Ning, D.M. Jiang, Influence of Zr addition on the microstructure evolution and thermal stability of Al-Mg-Mn alloy processed by ECAP at elevated temperature, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 452, 552–557 (2007) [CrossRef] [Google Scholar]
  25. P. Frint, M.F.X. Wagner, Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy, Acta Mater. 176, 306–317 (2019) [CrossRef] [Google Scholar]
  26. I. Balasundar, M. Sudhakara Rao, T. Raghu, Equal channel angular pressing die to extrude a variety of materials, Mater. Des. 30, 1050–1059 (2009) [CrossRef] [Google Scholar]
  27. F. Djavanroodi, M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Mater. Sci. Eng.: A 527, 1230–1235 (2010) [CrossRef] [Google Scholar]
  28. B.V. Patil, U. Chakkingal, T.S. Prasanna Kumar, Effect of geometric parameters on strain, strain inhomogeneity and peak pressure in equal channel angular pressing − a study based on 3D finite element analysis, J. Manuf. Process. 17, 88–97 (2015) [CrossRef] [Google Scholar]
  29. K.M. Agarwal, R.K. Tyagi, A. Kapoor, Deformation and strain analysis for grain refinement of materials processed through equal channel angular pressing, Mater. Today: Proc. 21, 1513–1519 (2020) [CrossRef] [Google Scholar]
  30. K. Mohan Agarwal, R.K. Tyagi, A. Dixit, Theoretical analysis of equal channel angular pressing method for grain refinement of metals and alloys, Mater. Today: Proc. 25, 668–673 (2020) [CrossRef] [Google Scholar]
  31. N. Fakhar, M. Sabbaghian, Hot shear deformation constitutive analysis of fine-grained ZK60 Mg alloy sheet fabricated via dual equal channel lateral extrusion and sheet extrusion, Trans. Nonferrous Met. Soc. China 32, 2541–2556 (2022) [CrossRef] [Google Scholar]
  32. X. Sun, D.-Y. Wu, M. Kang, K.T. Ramesh, L.J. Kecskes, Properties and hardening behavior of equal channel angular extrusion processed Mg-Al binary alloys, Mater. Charact. 195, 112514 (2023) [CrossRef] [Google Scholar]
  33. A. Ghosh, M. Ghosh, 3D FEM simulation of Al-Zn-Mg-Cu alloy during multi-pass ECAP with varying processing routes, Mater. Today Commun. 26, 102112 (2021) [CrossRef] [Google Scholar]
  34. M.I. Abd El Aal, 3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion, Trans. Nonferrous Met. Soc. China 27, 1338–1352 (2017) [CrossRef] [Google Scholar]
  35. A.I. Alateyah, M.M.Z. Ahmed, M.O. Alawad, S. Elkatatny, Y. Zedan, A. Nassef, W.H. El-Garaihy, Effect of ECAP die angle on the strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of pure magnesium: numerical simulation and experimental approach, J. Mater. Res. Technol. 17, 1491–1511 (2022) [CrossRef] [Google Scholar]
  36. Y. Iwahashi, J. Wang, Z. Horita, M. Furukawa, T. Langdon, Principle of equal channel angular pressing for the processing of ultra-fine grained materials[J], Scripta Mater. 35, 143–146 (1996) [CrossRef] [Google Scholar]
  37. M. Sabbaghian, R. Mahmudi, K.S. Shin, A comparative study on the microstructural features and mechanical properties of an Mg-Zn alloy processed by ECAP and SSE, Mater. Sci. Eng.: A 845, 143218 (2022) [CrossRef] [Google Scholar]
  38. T.A. Yilmaz, Y. Totik, G.M. Lule Senoz, B. Bostan, Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: effect of route, temperature and number of passes, Mater. Today Commun. 33, 104628 (2022) [CrossRef] [Google Scholar]
  39. S. Xu, G. Zhao, Y. Luan, Y. Guan, Numerical studies on processing routes and deformation mechanism of multi-pass equal channel angular pressing processes, J. Mater. Process. Technol. 176, 251–259 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.