Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Article Number 23
Number of page(s) 17
DOI https://doi.org/10.1051/smdo/2022016
Published online 09 November 2022
  1. A. Naghmeh, H. Stephen, M. Love Robert et al., Porous scaffolds for bone regeneration, J. Sci.: Adv. Mater. Dev. 5, 1–9 (2020) [Google Scholar]
  2. X.W. Shanqing Xu, S. Zhou, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials 83, 127–41 (2016) [CrossRef] [Google Scholar]
  3. S. Barui, S. Chatterjee, S. Mandal et al., Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis, Mater. Sci. Eng. C 70, 812–823 (2017) [CrossRef] [Google Scholar]
  4. R. Wauthle, B. Vrancken, B. Beynaerts et al., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Addit. Manufactur. 5, 77–84 (2015) [CrossRef] [Google Scholar]
  5. Z. Xu, A.N. Liu, X. Wang, B. Liu, M. Guo, Fatigue limit prediction model and fatigue crack growth mechanism for selective laser melting Ti6Al4V samples with inherent defects, Int. J. Fatigue 143, 106008 (2021) [CrossRef] [Google Scholar]
  6. W. Liu, C. Chen, S. Shuai, R. Zhao, L. Liu, X. Wang, T. Hu, W. Xuan, C. Li, J. Yu, J. Wang, Z. Ren, Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography, Mater. Sci. Eng. A 797, 139981 (2020) [CrossRef] [Google Scholar]
  7. B. Lxma, B. Ddba, B. Hjya et al., Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy, Mater. Sci. Eng. A 815, 141254 (2021) [CrossRef] [Google Scholar]
  8. K. Wei, F. Li, G. Huang, M. Liu, J. Deng, C. He, X. Zeng, Multi-laser powder bed fusion of Ti–6Al–4V alloy: defect, microstructure, and mechanical property of overlap region, Mater. Sci. Eng. A 802, 140644 (2021) [CrossRef] [Google Scholar]
  9. S. Tsopanos, R.A.W. Mines, S. Mckown, Y. Shen, W.J. Cantwell, W. Brooks, C.J. Sutcliffe, The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, J. Manufactur. Sci. Eng. 132, 041011 (2010) [CrossRef] [Google Scholar]
  10. R. Olaf, G. Bachmann Friedrich, E. Claus et al., Rapid manufacturing of lattice structures with selective lasermelting, Laser-Based Micropackag. 6017 61070K (2006). https://doi.org/10.1117/12.645848 [Google Scholar]
  11. S. Zhang, X. Shubo, P. Yuefei et al., Mechanism study of the effect of selective laser melting energy density on the microstructure and properties of formed renewable porous bone scaffolds, Metals 12 (10) 1712 (2022). [CrossRef] [Google Scholar]
  12. W. Zhuqing, D. Erik, M. Panagiotis et al., Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des. 113, 169–177 (2017) [CrossRef] [Google Scholar]
  13. M. Peter, K. Jean-Pierre, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12, 254–265 (2006) [CrossRef] [Google Scholar]
  14. K. Mahyar, G. Amirhossein, L. Martin et al., The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718, Optics & Laser Technology. 153 108263 (2022). [CrossRef] [Google Scholar]
  15. S. Xu, S. Zhang, G. Ren et al., Optimization of structural and processing parameters for selective laser melting of porous 316L bone scaffolds, Materials 15 (17) 5896 (2022). [CrossRef] [Google Scholar]
  16. H.E. Ali, G. Shengmin, R. Jonathan, Corrosion performance of additively manufactured stainless steel parts: a review, Addit. Manufactur. 37, 101689 (2021) [CrossRef] [Google Scholar]
  17. V. Cruz, Q. Chao, N. Birbilis et al., Electrochemical studies on the effect of residual stress on the corrosion of 316L manufacturedbyselectivelasermelting, Corros. Sci. 164 108314 (2020). [CrossRef] [Google Scholar]
  18. B. Xu, L. Kee-Won, L. Wenjie et al., A comparative study on cylindrical and spherical models in fabrication of bone tissue engineering scaffolds: finite element simulation and experiments, Mater. Des. 211, 110150 (2021) [CrossRef] [Google Scholar]
  19. G. Orhan, S. Ugur, C. Okan et al., Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design, Metals 12, 104 (2022) [CrossRef] [Google Scholar]
  20. M. Peter, K. Jean-Pierre, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12, 254–265 (2006) [CrossRef] [Google Scholar]
  21. L. Bartlett Jamison, P. Croom Brendan, B. Jeffrey et al., Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation, Addit. Manufactur. 22, 1–12 (2018) [CrossRef] [Google Scholar]
  22. A. Cuadrado, A. Yánez, O. Martel et al., Influence of load orientation and of types of loads on the mechanical properties of porous Ti6Al4V biomaterials, Mater. Des. 135, 309–318 (2017) [CrossRef] [Google Scholar]
  23. J. Lv, Z. Jia, J. Li et al., Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis, Adv. Eng. Mater. 17, 1391–1398 (2015) [CrossRef] [Google Scholar]
  24. N. Taniguchi, S. Fujibayashi, M. Takemoto et al., Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment, Mater. Sci. Eng. C 59, 690–701 (2016) [CrossRef] [Google Scholar]
  25. L.E. Murr, Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, J. Mech. Behav. Biomed. Mater. 76, 164–177 (2017) [CrossRef] [Google Scholar]
  26. Y.F.K. Ueda, M. Tanigawa, New measuring method of 3-dimensional residual stresses based on theory of inherent strain, J. Jpn. Soc. Naval Archit. Ocean Eng. 145, 203–211 (1979) [CrossRef] [Google Scholar]
  27. P. Mercelis, J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12, 254–265 (2006) [CrossRef] [Google Scholar]
  28. W. Zhuqing, D. Erik, M. Panagiotis et al., Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des. 113, 169–177 (2017) [CrossRef] [Google Scholar]
  29. L. Bartlett Jamison, P. Croom Brendan, B. Jeffrey et al., Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation, Addit. Manufactur. 22, 1–12 (2018) [CrossRef] [Google Scholar]
  30. S. Paul, K. Sören, K. Nikolai et al., Influence of laser shock peening on the residual stresses in additively manufactured 316L by laser powder bed fusion: a combined experimental- numerical study, Addit. Manufactur. 60 103204 (2022). [CrossRef] [Google Scholar]
  31. J. Hua-Zhen, L. Zheng-Yang, F. Tao et al., Effect of process parameters on defects, melt pool shape, microstructure, and tensile behavior of 316L stainless steel produced by selective laser melting, Acta Metall. Sin. (English Letters) 34, 495–510 (2020) [Google Scholar]
  32. G. Shaaz, B. Sarat, N. Kenneth et al., The influence of laser parameters, scanning strategies and material on the fatigue strength of a stochastic porous structure, Addit. Manufactur. 22, 290–301 (2018) [Google Scholar]
  33. K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scr. Mater. 63, 1201–1204 (2010) [Google Scholar]
  34. A.-M. Nahid Sultan, M. Deen Kashif, H. Waseem et al., Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions, Addit. Manufactur. 34, 101237 (2020) [CrossRef] [Google Scholar]
  35. C. Qi, C. Victor, T. Sebastian et al., On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scr. Mater. 141, 94–98 (2017) [CrossRef] [Google Scholar]
  36. H. Ettefagh Ali, G. Shengmin, R. Jonathan, Corrosion performance of additively manufactured stainless steel parts: a review, Addit. Manufactur. 37, 101689 (2021) [CrossRef] [Google Scholar]
  37. O. Takakuma, H. Soyama, Effect of residual stress on the corrosion behavior of austenitic stainless steel, Adv. Chem. Eng. Sci. 5, 62–71 (2015) [Google Scholar]
  38. X.P. Tan, Y.J. Tan, C.S.L. Chow et al., Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility, Mater. Sci. Eng. C 76, 1328–1343 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.