Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Advances in Modeling and Optimization of Manufacturing Processes
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/smdo/2022014 | |
Published online | 31 October 2022 |
- ISO, Textiles-tensile properties of fabrics, part 1: determination of maximum force and elongation at maximum force using the strip method, 2013 [Google Scholar]
- D. Norm, En ISO 527-5, no. 1108 1997 [Google Scholar]
- British Standards Institution, BS EN ISO 14125:1998 Licensed, A.J. Order, Theory Ordered Sets Its Appl., vol. 1998, July 2002, p. 24, 1998 [Online]. Available at: https://books.google.com/books?id=JZBNMwEACAAJ&pgis=1 [Google Scholar]
- A. Hallonet, Développement et caractérisation d'un matériau composite à base de fibres de lin: application au renforcement de structures en béton par collage externe, PhD thèse, Univ. Lyon, p. 231, 2016 [Google Scholar]
- T. Djoudi et al., Physico-mechanical characterization of composite materials based on date palm tree fibers, J. Nat. Fibers 18, 789–802 (2021) [CrossRef] [Google Scholar]
- T.T. Stanislas et al., Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants, J. Nat. Fibers 19, 1592–1608 (2020) [Google Scholar]
- L. Gornet, materiaux composites to cite this version: généralités sur les matériaux composites, pp. 1–48, 2011. [Google Scholar]
- G.B. Hughes, Calculating ellipse overlap areas, March 2018 [Google Scholar]
- B. Beckelynck, Étude de la délamination sur des matériaux composites tissés taffetas: essais de caractérisation et simulations numériques, 2016 [Google Scholar]
- R. Muñoz Sánchez, Mechanical behavior of hybrid 3D woven composites, doctoral thesis, p. 228, 2014 [Google Scholar]
- E.H. Taibi, Caracterisation, modélisation et simulation du comportemet d'un tissu textile, 2001 [Google Scholar]
- J. Vilfayeau, Modélisation numérique du procédé de tissage des renforts fibreux pour matériaux composites, Comptes Rendus des JNC 18, 2013. [Google Scholar]
- L.P. Brown et al., Characterisation and modelling of complex textile geometries using TexGen, IOP Conf. Ser. Mater. Sci. Eng. 406 (2018). doi: 10.1088/1757-899X/406/1/012024 [Google Scholar]
- S. Wahab et al., Analysis of mechanical properties for 2D woven kenaf composite analysis of mechanical properties for 2D woven kenaf composite, October 2018, 2014, doi: 10.4028/www.scientific.net/AMM.660.125 [Google Scholar]
- S. Tagne Nicodème Rodrigue et al., Investigation of the physical and mechanical properties of Raffia vinifera fibers along the stem, J. Nat. Fibers 14, 621–633 (2017) [CrossRef] [Google Scholar]
- Ship Structure Committee, Design Guide for Marine, 1997 [Google Scholar]
- J. Luc, Optimisation des propriétés mécaniques de composites à base de fibres naturelles: application à un composite de fibre de lin avec un mélange de polyéthylène/polypropylène d'origine post-consommation, 2015 [Google Scholar]
- A. Ghosh et al., Optimization of knitted fabric comfort and UV protection using desirability function, J. Eng. Fiber. Fabr. 11, 20–28 (2016) [Google Scholar]
- B. Zuccarello et al., New concept in bioderived composites: biochar as toughening agent for improving performances and durability of agave-based epoxy biocomposites, Polymers (Basel) 13, 1–14 (2021) [Google Scholar]
- A. Majumdar et al., Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm, Neural Comput. Appl. 27, 2567–2576 (2016) [CrossRef] [Google Scholar]
- E.G. de O. Filho et al., Effect of chemical treatment and length of raffia fiber (Raphia vinifera) on mechanical stiffening of polyester composites, Polymers (Basel) 12, 1–17 (2020) [Google Scholar]
- K.K. Agarwal, G. Agarwal, A study of mechanical properties of epoxy resin in presence of a study of mechanical properties of epoxy, June, 2019 [Google Scholar]
- Z. Boufaida, Analyse des propriétés mécaniques de composites taffetas verre/matrice acrylique en relation avec les propriétés d ' adhésion des fibres sur la matrice, p. 213, 2015 [Google Scholar]
- O.D.O. Osoka Emmanuel, A modified Halpin-Tsai model for estimating the modulus of natural fiber reinforced composites, Int. J. Eng. Sci. Invent. 7, 63–70 (2018) [Google Scholar]
- O. Harmouzi, Matériaux lignocellulosiques fonctionnels à partir a de plantes vivaces marocaines et de pates commerciales, J. Org. Chem. 3965 (2010) [Google Scholar]
- C. Florimond, Contribution a la modelisation mecanique du comportement de meche de renforts tisses a l'aide d'un schema elements finis implicite, 2013 [Google Scholar]
- D.S. Ivanov, S.V. Lomov, Compaction behaviour of dense sheared woven preforms: experimental observations and analytical predictions, Compos. Part A Appl. Sci. Manuf. 64, 167–176 (2014) [CrossRef] [Google Scholar]
- N. Dieunedort et al., Characterization of a brake lining composite based on aiele fruit cores (Canarium schweinfurthii) and palm kernel fibers (Elaeis guineensis) with a urea-formaldehyde matrix, Int. J. Sci. Eng. Res. 11, 1110–1117 (2020) [Google Scholar]
- R. Sepe et al., Mechanical properties of hemp fibre/epoxy composites. Influence of fibre chemical treatments, ECCM 2016 - Proceeding 17th Eur. Conf. Compos. Mater., June, pp. 26–30, 2016 [Google Scholar]
- F.T. Peirce, Geometry of Cloth Structure, J. Text. Inst. 28, 45–96 (1937) [Google Scholar]
- N.R.S. Tagne et al., Physicochemical and mechanical characterization of Raffia vinifera pith physicochemical and mechanical characterization of Raffia vinifera pith, December 2020, doi: 10.1155/2020/8895913 [Google Scholar]
- M. Hung, Modélisation des architectures à renforcement tridimentionnel dans les structures composites, 2014 [Google Scholar]
- M.S. Wahab et al., Analysis of mechanical properties for 2D woven kenaf composite, Appl. Mech. Mater. 660, 125–129 (2014) [CrossRef] [Google Scholar]
- H.A. Aisyah et al., A comprehensive review on advanced sustainable woven natural fibre polymer composites, February 2021, doi: 10.3390/polym13030471 [Google Scholar]
- A. Mir et al., Caractérisation mécanique et thermomécanique d'un stratifié Jute / époxy [Mechanical and thermomechanical characterization of jute/epoxy laminate], HAL hal- 0038 9086, 2009 [Google Scholar]
- G. Coroller et al., Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite, Compos. Part A Appl. Sci. Manuf. 51, 62–70 (2013) [CrossRef] [Google Scholar]
- A.R. Sena Neto et al., Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites, Ind. Crops Prod. 64, 68–78 (2015) [CrossRef] [Google Scholar]
- C. Fragassa, C. Fragassa, Effect of natural fibers and bio-resins on mechanical properties in hybrid and non- hybrid composites, 020118 (2019), doi: 10.1063/1.4949693 [Google Scholar]
- R. Jeyapragash et al., Mechanical properties of natural fiber/particulate reinforced epoxy composites − a review of the literature, Mater. Today Proc. 22, 1223–1227 (2020) [CrossRef] [Google Scholar]
- T.K. Khieng, A review on mechanical properties of natural fibre reinforced polymer composites under various strain rates, J. Compos. Sci. 5, 1–13 (2021) [Google Scholar]
- M. Kumar, R. Singh, Development of the hybrid natural fiber reinforced polymer composites using the bidirectional sisal and woven jute fiber, Int. J. Tech. Res. Sci. 05, 35–42 (2020) [CrossRef] [Google Scholar]
- A.P. Irawan, I.W. Sukania, Tensile strength of banana fiber reinforced epoxy composites materials, Appl. Mech. Mater. 776, 260–263 (2015) [CrossRef] [Google Scholar]
- P. Dwivedi et al., Study of mechanical behaviour & water-absorption characteristics of sisal-bagasse fibre reinforced hybrid epoxy composites, Int. J. Eng. Tech. Res. 9, 23–32 (2019) [Google Scholar]
- C. Cerbu, Mechanical characterization of the flax/epoxy composite material, Procedia Technol. 19, 268–275 (2015) [CrossRef] [Google Scholar]
- S. Dhanalakshmi et al., Areca fiber reinforced epoxy composites: effect of chemical treatments on impact strength, Orient. J. Chem. 31, 763–769 (2015) [CrossRef] [Google Scholar]
- Z. Djafar et al., Tensile and bending strength analysis of ramie fiber and woven ramie reinforced epoxy composite, J. Nat. Fibers 18, 2315–2326 (2021) [CrossRef] [Google Scholar]
- R.H. Rao et al., Study on mechanical behaviour of banana fiber reinforced epoxy composites, Asian J. Multidiscip. Res. 5, 1–4 (2019) [CrossRef] [Google Scholar]
- A.J. Olaitan et al., Comparative assessment of mechanical properties of groundnut shell and rice husk reinforced epoxy composites, 5, 76–86 (2017) [Google Scholar]
- H. Salem, E. Tayeb, The impact of rice straw micro fibres reinforced epoxy composite on tensile strength and break strain, Int. J. Sci. Eng. Res. 5, 58–62 (2014) [Google Scholar]
- M.S.R. and S.M.S.M.M.B.H. Salleh et al., Mechanical properties of coconut carbon fibre / epoxy composite material, Int. J. Mech. Eng. 2, 55–62 (2013) [Google Scholar]
- D. Chakrabarti et al., Effect of chemical treatment on the mechanical properties of luffa fiber reinforced epoxy composite, J. Eng. Adv. 01, 37–42 (2020) [CrossRef] [Google Scholar]
- V. Gopalan et al., Dynamic characteristics of woven flax/epoxy laminated composite plate, Polymers (Basel) 13, 1–14 (2021) [Google Scholar]
- M.A. Maleque et al., Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite, Arab. J. Sci. Eng. 32, 359–364 (2007) [Google Scholar]
- R.S., et D.S.B. Venkatesha, Mechanical properties of woven bamboo/E-glass fiber reinforced epoxy hybrid composites, Trans Stellar, 2020 [Google Scholar]
- V.R.-R., E.F.-U. Mauricio Torres-Arellano, Mechanical properties of natural-fiber-reinforced biobased epoxy resins manufactured by resin infusion process, 2020 [Google Scholar]
- N. Sarifuddin et al., Mechanical properties of woven carbon fiber/Kenaf fabric reinforced epoxy hybrid composites, 2019 [Google Scholar]
- A.P. Irawan et al., Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application, Int. J. Mech. Mater. Eng. 6, 46–50 (2011) [Google Scholar]
- R.T. Fujiyama, A. Clay, Effect of chemical treatment and length of Raffi a fiber (Raphia vinifera) on mechanical stiffening of polyester composites, 2020 [Google Scholar]
- D. Kocak et al., Research into the specifications of woven composites obtained from raffia fibers pretreated using the ecological method, Text. Res. J. 85, 302–315 (2015) [CrossRef] [Google Scholar]
- S. Dridi, Essais de caractérisation des structures tissées, Institut National des Siences Appliquées de Lyon, 2010 [Google Scholar]
- M.H.M. Amin et al., An evaluation of mechanical properties on kenaf natural fiber/polyester composite structures as table tennis blade, J. Phys. Conf. Ser. 914, (2017), doi: 10.1088/1742-6596/914/1/012015 [Google Scholar]
- A. Boltnev, N. Kalitkin, Speeding up the convergence of, pp. 349–354, 2005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.