Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Advances in Modeling and Optimization of Manufacturing Processes
Article Number 27
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2021025
Published online 29 October 2021
  1. P.G. Benardos, G.C. Vosniakos, Predicting surface roughness in machining: a review, Int. J. Mach. Tools Manuf. 43, 833–844 (2003) [CrossRef] [Google Scholar]
  2. C. Lu, Study on prediction of surface quality in machining process, J. Mater. Process. Technol. 205, 439–450 (2008) [CrossRef] [Google Scholar]
  3. S.G. Croll, Surface roughness profile and its effect on coating adhesion and corrosion protection: a review, Prog. Org. Coat. 148, 105847 (2020) [CrossRef] [Google Scholar]
  4. S.J. Zhang, S. To, S.J. Wang, Z.W. Zhu, A review of surface roughness generation in ultra-precision machining, Int. J. Mach, Tools Manuf. 91, 76–95 (2015) [CrossRef] [Google Scholar]
  5. H.L. Fisher, J.T. Elrod, Surface finish as a function of tool geometry and feed − a theoretical approach, Microtechnic 25, 175–178 (1971) [Google Scholar]
  6. W.A. Kline, R.E. DeVor, I.A. Shareef, The prediction of surface accuracy in end milling, ASME. J. Eng. Ind. 104, 272–278 (1982) [CrossRef] [Google Scholar]
  7. K-H. Fuh, C-F. Wu, A proposed statistical model for surface quality prediction in end milling of Al alloy, Int. J. Mach Tools Manuf. 35, 1187–1200 (1995) [CrossRef] [Google Scholar]
  8. H. Paris, G. Peigne, R. Mayer, Surface shape prediction in high speed milling, Int. J. Mach, Tools Manuf. 44, 1567–1576 (2004) [CrossRef] [Google Scholar]
  9. Y. Mizugaki, K. Kikkawa, H. Terai, M. Hao, T. Sata, Theoretical estimation of machined surface profile based on cutting edge movement and tool orientation in ball-nosed end milling, CIRP Annals. 52, 49–52 (2003) [CrossRef] [Google Scholar]
  10. T. Sekine, T. Obikawa, M. Hoshino, Establishing a novel model for 5-axis milling with filleted end mill, J. Adv. Mech. Des. Syst. Manuf. 6, 296–309 (2012) [CrossRef] [Google Scholar]
  11. T. Sekine, T. Obikawa, Novel path interval determination in 5-axis flat end milling. Appl. Math. Model. 39, 3459–3480 (2015) [CrossRef] [Google Scholar]
  12. A.M. Khorasani, M.R.S. Yazdi, M.S. Safizadeh, Analysis of machining parameters effects on surface roughness: a review, Int. J. Comput. Mater. Sci. Surf. Eng. 5, 68–84 (2012) [Google Scholar]
  13. T. Matsumura, S. Takahashi, Micro dimple milling on cylinder surfaces, J. Manuf. Process. 14, 135–140 (2012) [CrossRef] [Google Scholar]
  14. I. Perez, A. Madariaga, P.J. Arrazola, M. Cuesta, D. Soriano, An analytical approach to calculate stress concentration factors of machined surfaces, Int. J. Mech. Sci. 190, 106040 (2021) [CrossRef] [Google Scholar]
  15. Y. Quinsat, L. Sabourin, C. Lartigue, Surface topography in ball end milling process: description of a 3D surface roughness parameter, J. Mater. Process. Technol. 195, 135–143 (2008) [CrossRef] [Google Scholar]
  16. R.B. Käsemodel, A.F. de Souza, R. Voigt, I. Basso, A.R. Rodrigues, CAD/CAM interfaced algorithm reduces cutting force, roughness, and machining time in free-form milling. Int. J. Adv. Manuf. Technol. 107, 1883–1900 (2020) [CrossRef] [Google Scholar]
  17. Y.K. Choi, A. Banerjee, J.W. Lee, Tool path generation for free form surfaces using Bézier curves/surfaces, Comput. Ind. Eng. 52, 486–501 (2007) [CrossRef] [Google Scholar]
  18. T. Obikawa, T. Sekine. A higher-order formula of path interval for tool-path generation, Int. J. Autom. Technol. 5, 663–668 (2011) [CrossRef] [Google Scholar]
  19. L.T. Tunc, Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models, Robot. Comput. Integr. Manufactur. 56, 212–221 (2019) [CrossRef] [Google Scholar]
  20. G.M. Mladenovic, L.M. Tanovic, K.F. Ehmann, Tool path generation for milling of free form surfaces with feedrate scheduling, FME Trans. 43, 9–15 (2015) [CrossRef] [Google Scholar]
  21. T. Sekine, T. Obikawa, Novel path interval determination in 5-axis flat end milling, Appl. Math. Model. 39, 3459–3480 (2015) [CrossRef] [Google Scholar]
  22. D. Plakhotnik, B. Lauwers, Computing of the actual shape of removed material for five-axis flat-end milling, Comput. Aided Des. 44, 1103–1114 (2012) [CrossRef] [Google Scholar]
  23. S. Segonds, P. Seitier, C. Bordreuil, F. Bugarin, W. Rubio, J.M. Redonnet, An analytical model taking feed rate effect into consideration for scallop height calculation in milling with torus-end cutter, J. Intell. Manuf., 30, 1881–1893 (2019) [CrossRef] [Google Scholar]
  24. T. Sekine, T. Obikawa, M. Hoshino, Establishing a novel model for 5-axis milling with filleted end mill, J. Adv. Mech. Des. Syst. Manufactur. 6, 296–309 (2012) [CrossRef] [Google Scholar]
  25. T. Sekine, A 3D geometrical consideration of path interval in filleted end milling, J. Jpn. Soc. Abras. Technol. 60, 515–519 (2016) (in Japanese) [Google Scholar]
  26. T. Sekine, A computational algorithm for path interval determination in multi-axis filleted end milling, Adv. Sci. Technol. Res. J. 14, 198–205 (2020) [CrossRef] [Google Scholar]
  27. R.A. Mali, T.V.K. Gupta, J. Ramkumar, A comprehensive review of free-form surface milling- Advances over a decade, J. Manufactur. Process. 62, 132–167 (2021). [CrossRef] [Google Scholar]
  28. I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes, Comput. Ind. Eng. 50, 15–34 (2006) [CrossRef] [Google Scholar]
  29. A.M. Khorasani, M.R.S. Yazdi, M.S. Safizadeh, Analysis of machining parameters effects on surface roughness: a review, Int. J. Comput. Mater. Sci. Surf. Eng. 5, 68–84 (2012). [Google Scholar]
  30. I. Perez, A. Madariaga, P.J. Arrazola, M. Cuesta, D. Soriano, An analytical approach to calculate stress concentration factors of machined surfaces, Int. J. Mech. Sci. 190, 106040 (2021) [CrossRef] [Google Scholar]
  31. R.B. Käsemodel, A.F. de Souza, R. Voigt, I. Basso, A.R. Rodrigues, CAD/CAM interfaced algorithm reduces cutting force, roughness, and machining time in free-form milling, Int. J. Adv. Manuf. Technol. 107, 1883–1900 (2020) [CrossRef] [Google Scholar]
  32. I. Lazoglu, S.E.L. Khavidaki, A. Mamedov, H. Erdim, Process optimization via feedrate scheduling in milling. In: The International Academy for Production Engineering, edited by L. Laperrière, G. Reinhart, CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg (2014) [Google Scholar]
  33. M. Habibi, Z.M. Kilic, Y. Altintas, Minimizing flute engagement to adjust tool orientation for reducing surface errors in five-axis ball end milling operations, ASME. J. Manuf. Sci. Eng. 143, 021009 (2021) [CrossRef] [Google Scholar]
  34. X. Zhang, J. Zhang, X. Zheng, B. Pang, W. Zhao, Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model, CIRP J. Manufactur. Sci. Technol. 19, 106–116 (2017) [CrossRef] [Google Scholar]
  35. S. Lotfi, B. Rami, B. Maher, D. Gilles, B. Wassila, An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis ball end milling, J. Manuf. Process. 34, 7–17 (2018) [CrossRef] [Google Scholar]
  36. N. Masmiati, A.A.D. Sarhan, Optimizing cutting parameters in inclined end milling for minimum surface residual stress − Taguchi approach, Measurement 60, 267–275 (2015) [CrossRef] [Google Scholar]
  37. S. Wojciechowski, R.W. Maruda, P. Nieslony, G.M. Krolczyk, Investigation on the edge forces in ball end milling of inclined surfaces, Int. J. Mech. Sci. 119, 360–369 (2016) [CrossRef] [Google Scholar]
  38. E. Budak, E. Ozlu, Development of a thermomechanical cutting process model for machining process simulations, CIRP Ann. 57, 97–100 (2008) [CrossRef] [Google Scholar]
  39. K.D. Bouzakis, P. Aichouh, K. Efstathiou, Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools, Int. J. Mach. Tools Manufact. 43, 499–514 (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.