Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 19
Number of page(s) 8
DOI https://doi.org/10.1051/smdo/2020005
Published online 13 August 2020
  1. B.G. Choi, B.S. Yang, Optimum shape design of rotor shafts using genetic algorithm, J. Vib. Control 6, 207–222 (2002) [Google Scholar]
  2. D.S. Lee, D.H. Choi, Reduced weight design of a flexible rotor with ball bearing stiffness characteristics varying with rotational speed and load, J. Vib. Acoust. 122, 203–208 (2000) [Google Scholar]
  3. S.C. Huang, C.A. Lin, Sensitivity analysis and optimization of undamped rotor critical speeds to supports stiffness, J. Vib. Acoust. 124, 296–301 (2002) [Google Scholar]
  4. B.S. Yang, S.P. Choi, Y.C. Kim, Vibration reduction optimum design of a steam-turbine rotor-bearing system using a hybrid genetic algorithm, Struct. Multidiscipl. Optim. 30, 43–53 (2005) [Google Scholar]
  5. S. Frank, I. Mizuho, S. Jens, Reduction of vibration level in rotordynamics by design optimization, Struct. Multidiscipl. Optim. 34, 139–149 (2007) [Google Scholar]
  6. O.P. Alexander, Application of gradient-based optimization methods for a rotor system with static stress, natural frequency, and harmonic response constraints, Struct. Multidiscipl. Optim. 47, 951–962 (2013) [Google Scholar]
  7. T.N. Shiau, J.R. Chang, W.B. Wu, Multi-objective optimization of the geared rotor-bearing system for multi-objectives with critical speed constraints, in ASME Turbo Expo 2004: Power for Land, Sea and Air, Vienna, Austria (2004) 14–17 [Google Scholar]
  8. O.T.C. Matthew, S.K. Patrick, On lmi-based optimization of vibration and stability in rotor system design, in ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno-Tahoe, Nevada, USA (2005) 6–9 [Google Scholar]
  9. B.G. Choi, B.S. Yang, Multiobjective optimum design of rotor-bearing systems with dynamic constraints using immune-genetic algorithm, J. Eng. Gas Turb. Power 123, 78–81 (2001) [Google Scholar]
  10. L.X. Zheng, Sh. X. Jia, J.J. Huang, Numerical and experimental study on the multiobjective optimization of a two-disk flexible rotor system, Int. J. Rotat. Mach. 2017 (2017) [Google Scholar]
  11. Sh.X. Jia, L.X. Zheng, J.J. Huang, Dynamic characteristics analysis and optimization design of a simulated power turbine rotor based on finite element method, Int. J. Turbo Jet-Engines 37, 31–39 (2020) [Google Scholar]
  12. B.G. Liu, Eigenvalue problems of rotor system with uncertain parameters, J. Mech. Sci. Technol. 26, 1–10 (2012) [Google Scholar]
  13. H.Y. Zhang, Ch.Q. Bai, Y.J. Mao, Stochastic finite element modeling and response analysis of rotor systems with random properties under random loads, J. Mech. Sci. Technol. 29, 3083–3090 (2015) [Google Scholar]
  14. Ch.B. Gan, Y.H. Wang, Sh.X. Yang, Y.L. Cao, Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset, Int. J. Mech. Sci. 78, 126–134 (2014) [Google Scholar]
  15. J. Hong, J. Wang, M. Chen, Y.H. Ma, Dynamic response analysis of rotor system with uncertain parameters via interval analysis method, in Proceedings of ASME Turbo Expo 2012, Copenhagen, Denmark (2012) [Google Scholar]
  16. Y.H. Ma, Zh. Liang, M. Chen, J. Hong, Interval analysis of rotor dynamic response with uncertain parameters, J. Vib. Control 332, 3869–3880 (2013) [Google Scholar]
  17. Y.F. Zuo, J.J. Wang, A method for dynamic analysis of three-dimensional solid element rotors with uncertain parameters, J. Eng. Gas Turb. Power 139, 1–4 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.