Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 13
Number of page(s) 7
DOI https://doi.org/10.1051/smdo/2020009
Published online 04 August 2020
  1. L. Henesey, P. Davidsson, J.A. Persson, Agent-based simulation architecture for evaluating operational policies in transshipping containers, Auton. Agent Multi-Agent Syst. 18, 220–238 (2009) [CrossRef] [Google Scholar]
  2. B. Li, W.F. Li, Modelling and simulation of container terminal logistics systems using Harvard architecture and agent-based computing, in Proceedings of the 2010 Winter Simulation Conference, 2010 [Google Scholar]
  3. T. Thurston, H. Hu, Distributed agent architecture for port automation, in Proceedings of the 26th Annual International Computer Software and Applications Conference, 2002 [Google Scholar]
  4. E. Frankel, Port planning and development (Wiley, New York, 1987) [Google Scholar]
  5. J. Wang, K. Gwebu, M. Shanker, M.D. Troutt, An application of agent-based simulation to knowledge sharing, Dec. Supp. Syst. 46, 532–541 (2009) [CrossRef] [Google Scholar]
  6. J. Hoffer, J. George, J. Valacich, Modern systems analysis and design (Prentice Hall PTR, Ipper Saddle River, NJ, USA, 2002) [Google Scholar]
  7. F. Ramadhan, R. Soesanto, A. Rizana, A. Kurniawati, I. Wiratmadja, Mechanism for effective tacit knowledge transfer in university laboratory: an agent based approach, IEEE Int. Conf. Ind. Eng. Eng. Manag. (2017) [Google Scholar]
  8. A. Kurniawati, F. Ramadhan, R. Soesanto, I. Wiratmadja, Open innovation for course development process using simulation-based programming, IEEE International Conference on Industrial Engineering and Engineering Management, 2019 [Google Scholar]
  9. A. Garro, W. Russo, easyABMS: A domain-expert oriented methodology for agent-based modeling and simulation, Simul. Model. Pract. Theory 18, 1453–1467 (2010) [CrossRef] [Google Scholar]
  10. M.J. Roorda, R. Cavalcante, S. McCabe, H. Kwan, A conceptual framework for agent-based modeling of logistics services, Transp. Res. E 46, 18–31 (2010) [CrossRef] [Google Scholar]
  11. Z. Sun, H.L. Lee, P.E. Chew, C.K. Tan, MicroPort: A general simulation platform for seaport container terminals, Adv. Eng. Inf. 26, 80–89 (2012) [CrossRef] [Google Scholar]
  12. A. Rizaldi, M. Wasesa, N.M. Rahman, Yard cranes coordination schemes for automated container terminals: an agent-based approach, Proc. Manufactur. 4, 124–132 (2015) [CrossRef] [Google Scholar]
  13. M. Huijuan, H. Yongfa, D. Yuyue, The scheduling of quay cranes and truck in container port-A simulation-based method, Int. Conf. Appl. Sci. Eng. Innov. (2015) [Google Scholar]
  14. R. Cimpeanu, J.S. Carson, B.L. Nelson, Discrete-event system simulation (Prentice-Hall, Upper Saddle River, N.J., 1996) [Google Scholar]
  15. J. Banks, Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice (Engineering & Management Press, Atlanta, 1998) [Google Scholar]
  16. M.J. North, C.M. Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation (Oxford University Press, 2007) [CrossRef] [Google Scholar]
  17. B. Dragovic, N.K. Park, Z. Radmilovic, Ship-berth link performance evaluation: Simulation and analytical approaches, Maritime Policy Manag. 33, 281–299 (2006) [CrossRef] [Google Scholar]
  18. A.G.N. Novaes, B. Scholz-Reiter, V.M.D. Silva, H. Rosa, Long-term planning of a container terminal under demand uncertainty and economies of scale, Pesquisa Oper. 32, 55–85 (2012) [CrossRef] [Google Scholar]
  19. S. Pratap, A. Nayak, A. Kumar, N. Cheikrouhou, M.K. Tiwari, An integrated decision support system for berth and ship unloader allocation in bulk material handling port, Comput. Ind. Eng. 106, 386–399 (2017) [CrossRef] [Google Scholar]
  20. J.A. Goulet, I.F.C. Smith, Extended uniform distribution accounting for uncertainty of uncertainty, Int. Symp. Uncert. Model. Anal. Manag. (2011) [Google Scholar]
  21. A. Budipriyanto, B. Wirjodirdjo, I.N. Pujawan, S. Gurning, A simulation study of collaborative approach to berth allocation problem under uncertainty, Asian J. Ship. Logist. 33, 127–139 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.