Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 14
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2020010
Published online 04 August 2020
  1. D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol. 6, 788 (2011) [Google Scholar]
  2. F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films, Nano Lett. 12, 3109–3114 (2012) [Google Scholar]
  3. C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn, K.Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nat. Mater. 11, 795 (2012) [Google Scholar]
  4. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, A soft future: from robots and sensor skin to energy harvesters, Advanced Materials 26, 149–162 (2014) [Google Scholar]
  5. Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems, Angew. Chem. In t. Ed. 51, 11700–11721 (2012) [Google Scholar]
  6. G. Zhu, W.Q. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou, Z.L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification, Nano Lett. 14, 3208–3213 (2014) [Google Scholar]
  7. J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack, S. Li, H. Cheng, Materials and optimized designs for human-machine interfaces via epidermal electronics, Adv. Mater. 25, 6839–6846 (2013) [Google Scholar]
  8. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, S. Bauer, An ultra-lightweight design for imperceptible plastic electronics, Nature 499, 458 (2013) [Google Scholar]
  9. S.-Y. Liu, J.-G. Lu, H. Shieh, Influence of permittivity on the sensitivity of porous elastomer-based capacitive pressure sensors, IEEE Sens. J. 18, 1870–1876 (2018) [Google Scholar]
  10. N. Anadkat, M. Rangachar, Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics, in International Journal of Engineering Research and Technology (ESRSA Publications, 2015) [Google Scholar]
  11. K. Bhol, Highly sensitive MEMS based capacitive pressure sensor design using COMSOL multiphysics & its application in lubricating system, Eng. Appl. Sci. 2, 66–71 (2017) [Google Scholar]
  12. B. Kirankumar, B.G. Sheeparamatti, A critical review on MEMS capacitive pressure sensors, Sens. Transduc. J. 187, 120–128 (2015) [Google Scholar]
  13. R. Mishra, K. Kumar, Mathematical modelling and comparative study of elliptical and circular capacitive pressure microsensor, IOP Conf. Ser.: Mater. Sci. Eng. 404, 012026 (2019) [Google Scholar]
  14. G. Mishra, N. Paras, A. Arora, P.J. George, Simulation of MEMS based capacitive pressure sensor using comsol multiphysics, Int. J. Appl. Eng. Res. 7 (2012) [Google Scholar]
  15. A. Sabet, X.J. Avula, Sensitivity to Shape and Membrane Thickness Variations in Capacitive Pressure Sensors, in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show , 2006 [Google Scholar]
  16. B.A. Ganji, M. Nateri, Modeling of capacitance and sensitivity of a MEMS pressure sensor with clamped square diaphragm, Int. J. Eng. Trans. B 26, 1331–1336 (2013) [Google Scholar]
  17. M.Z. Shaikh, S. Kodad, B. Jinaga, A comparative performance analysis of capacitive and piezoresistive MEMS for pressure measurement, Int. J. Comput. Sci. Appl. 1, 201–204 (2008) [Google Scholar]
  18. S. Saxena, R. Sharma, B. Pant, Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester, Microsyst. Technolog. 23, 1751–1759 (2016) [Google Scholar]
  19. M.A. Varma, S. Jindal, Novel design for performance enhancement of a touch-mode capacitive pressure sensor: theoretical modeling and numerical simulation, J. Comput. Electr. 17, 1–10 (2018) [Google Scholar]
  20. W.H. Ko, Q. Wang, Touch mode capacitive pressure sensors for industrial applications, in Proceedings of Tenth Annual International Workshop on Micro Electro Mechanical Systems, MEMS' 97, IEEE , 1997 [Google Scholar]
  21. M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, T. Yamada, Influence of metal electrodes on crystal orientation of aluminum nitride thin films, Vacuum 74, 699–703 (2004) [Google Scholar]
  22. M. Shampa, Preparation of undoped and some doped ZnO thin films by silar and their characterization, Ph.D. thesis, The University of Bardhaman, 2013 [Google Scholar]
  23. P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, A. Zrenner, Periodic domain inversion in X-cut single-crystal lithium niobate thin film, Appl. Phys. Lett. 108, 152902 (2016) [Google Scholar]
  24. J. Cheng, D. Fan, H. Wang, B. Liu, Y. Zhang, H. Yan, Chemical bath deposition of crystalline ZnS thin films, Semicond. Sci. Technol. 18, 676 (2003) [Google Scholar]
  25. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells (McGraw-Hill, 1959) [Google Scholar]
  26. S.-C. Gong, C. Lee, Analytical solutions of sensitivity for pressure microsensors, IEEE Sens. J. 1, 340–344 (2001) [Google Scholar]
  27. A. Ibrahim, Remotely interrogated MEMS pressure sensor, University of Glasgow, 2012 [Google Scholar]
  28. R. Khakpour, S.R. Mansouri, A. Bahadorimehr, Analytical comparison for square, rectangular and circular diaphragms in MEMS applications, in Intl Conf on Electronic Devices, Systems and Applications (ICEDSA), IEEE , 2010 [Google Scholar]
  29. K.B. Balavalad, B. Sheeparamatti, Sensitivity analysis of MEMS capacitive pressure sensor with different diaphragm geometries for high pressure applications, Young 1, 1 (2015) [Google Scholar]
  30. N. Anadkat, M. Rangachar, Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics, Int. J. Eng. Res. Technol. 4, 848–852 (2015) [Google Scholar]
  31. A.E. Kubba, A. Hasson, A.I. Kubba, G. Hall, A micro-capacitive pressure sensor design and modelling, J. Sens. Sens. Syst. 5, 95–112 (2016) [Google Scholar]
  32. H.-S. Lee, S.P. Chang, C. Cho, Design and analysis of laminated stainless steel membrane-based microsensors, Sensors J. IEEE 8, 182–187 (2008) [Google Scholar]
  33. D. Belavič, M. Santo Zarnik, C. Marghescu, C. Ionescu, P. Svasta, M. Hrovat, S. Kocjan, Design of a capacitive LTCC-based pressure sensor, in 15th International Symposium for Design and Technology of Electronics Packages (SIITME) , 2009, IEEE [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.