Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 21
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2020015
Published online 25 September 2020
  1. Y.T. Wua, Y. Dinga, Y.B. Jia, C.F. Maa, M.C. Ge, Modification and experimental research on vortex tube, Int. J. Refrigerat. 30 , 1042–1049 (2007) [CrossRef] [Google Scholar]
  2. K. Dincer, S. Baskaya, B.Z. Uysal, Experimental Investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes, Heat Mass Transfer 44 , 367–373 (2008) [CrossRef] [Google Scholar]
  3. A. Pinar, M.O. Uluer, V. Kirmaci, Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method, Int. J. Refrigerat. 32 , 1487–1494 (2009) [CrossRef] [Google Scholar]
  4. O. Aydın, B. Markal, M. Avcı, A new vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube, Appl. Thermal Eng. 30 , 2505–2511 (2010) [CrossRef] [Google Scholar]
  5. K. Dincer, Experimental investigation of the effects of three-fold type Ranque-Hilsch vortex tube and six cascade type Ranque-Hilsch vortex tube on the performance of counter flow Ranque-Hilsch vortex tubes, Int. J. Refriger. 34 , 1366–1371 (2011) [CrossRef] [Google Scholar]
  6. J. Prabakaran, S. Vaidyanathan, D. Kanagarajan, Establishing empirical relation to predict temperature difference of vortex tube using response surface methodology, J. Eng. Sci. Technol. 7 , 722–731 (2012) [Google Scholar]
  7. A. Berber, K. Dincer, Y. Yılmaz, D.N. Ozen, Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque-Hilsch vortex tubes with different geometric construction for steel, Energy J. 51 , 297–304 (2013) [CrossRef] [Google Scholar]
  8. M. Bovand, M.S. Valipour, K. Dincer, S. Eiamsa-ard, Application of response surface methodology to optimization of a standard Ranque-Hilsch vortex tube refrigerator, Appl. Thermal Eng. 67 , 545–553 (2014) [CrossRef] [Google Scholar]
  9. P. Jayaraman, L. Mahesh Kumar, Multi-response optimization of machining parameters of turning AA6063 T6 aluminum alloy using grey relational analysis in Taguchi method, Sci. Direct Proc. Eng. 97 , 197–204 (2014) [CrossRef] [Google Scholar]
  10. D. Venkata Sivareddy, P. Vamsi Krishna, A. Venu Gopal, C.L. Prithvi Raz, Parameter optimization in vibration assisted turning of Ti6Al4V alloy using ANOVA and grey relational analysis, Int. J. Autom. Mech. Eng. 15 , 5400–5420 (2018) [CrossRef] [Google Scholar]
  11. V.H. Nguyen, T.N. Huynh, T.P. Nguyen, T.T. Tran, Single and multi-objective optimization of processing parameters for fused deposition modelling in 3D printing technology, Int. J. Autom. Mech. Eng. 17 , 7542–7551 (2020) [CrossRef] [Google Scholar]
  12. A.F. Hawary, M.I. Ramdan, Hybrid hydraulic vehicle parameter optimization using multi-objective genetic algorithm, Int. J. Autom. Mech. Eng. 16 , 7007–7018 (2019) [CrossRef] [Google Scholar]
  13. K.G. Hellyar, Gas Liquefaction using a Ranque–Hilsch Vortex Tube: Design Criteria and Bibliography. Report for the Degree of Chemical Engineer (Massachusetts Institute of Technology; 1979) [Google Scholar]
  14. N. Logothetis, A. Haigh, Characterizing and optimizing multi-response by Taguchi method, Qual. Reliability 4 , 159–169 (1988) [CrossRef] [Google Scholar]
  15. J.L. Deng, Introduction to Grey system, J. Grey Syst. 1 , 1–24 (1989) [Google Scholar]
  16. G. Taguchi, Introduction to Quality Engineering (Asian Productivity Organization, Tokyo, 1990) [Google Scholar]
  17. G.S. Peace, Taguchi Method (Addison-Wesley, 1993) [Google Scholar]
  18. P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd edn. (McGraw-Hill, New York, 1996) [Google Scholar]
  19. K. Dincer, S. Tasdemir, S. Baskaya, B.Z. Uysal, Modeling of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes using artificial neural networks, Appl. Thermal Eng. 28 , 2380–2390 (2008) [CrossRef] [Google Scholar]
  20. A.M. Pinar, O. Uluer, V. Kirmaci, Optimization of counterflow Ranque-Hilsch Vortex Tube performance using Taguchi method, Int. J. Refrigerat. 32 , 1487–1494 (2009) [CrossRef] [Google Scholar]
  21. S. Eiamsa-ard, K. Wongcharee, P. Promvonge, Experimental investigation on energy separation in a counter-flow Ranque-Hilsch vortex tube: effect of cooling a hot tube, Int. Commun. Heat Mass Transfer 37 , 156–162 (2010) [CrossRef] [Google Scholar]
  22. M. Bovand, M.S. Valipour, K. Dincer, A. Tamayol, Numerical analysis of the curvature effects on Ranque-Hilsch vortex tube refrigerators, Appl. Thermal Eng. 65 , 176–183 (2014) [CrossRef] [Google Scholar]
  23. M. Bovand, M.S. Valipour, S. Eiamsa-ard, A. Tamayol, Numerical analysis for curved vortex tube optimization, Int. Commun. Heat Mass Transfer 50 , 98–107 (2014) [CrossRef] [Google Scholar]
  24. V. Kirmaci, Experimental investigation of cooling − heating performance of counter flow Ranque-Hilsch vortex tubes having different length diameter ratio, Cumhuriyet Sci. J. 38 , 813–821 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.