Open Access
Review
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 5
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2019022
Published online 31 January 2020
  1. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Joint Conference on Neural Networks, IEEE Press, vol. 8, 1995, pp. 1943–1948 [Google Scholar]
  2. J. Kennedy, R. Mendes, Population structure and particle swarm performance, in Proceedings of the IEEE 2002 Congress on Evolutionary Computation, 2002 [Google Scholar]
  3. T.-O. Ting, M.V.C. Rao, C.K. Loo, S.-S. Ngu, A new class of operators to accelerate particle swarm optimization, Proc. IEEE Congr. Evol. Comput. 4, 2406–2410 (2003) [Google Scholar]
  4. R. Poli, W.B. Langdon, O. Holland, Extending particle swarm optimization via genetic programming, in: M. Keijzer, A.G.B. Tettamanzi, P. Collet, J. van Hemert, M. Tomassini (Eds.), Genetic Programming, LNCS (Springer, Heidelberg, 2005), vol. 3447, pp. 291–300 [CrossRef] [Google Scholar]
  5. T.R. Ramanan, M. Iqbal, K. Umarali. A particle swarm optimization approach for permutation flow shop scheduling problem, Int. J. Simul. Multisci. Des. Optim. 5, A20 (2014) [CrossRef] [Google Scholar]
  6. N. Elhami, R. Ellaia, M. Itmi, Hybrid evolutionary optimization algorithm MPSO-SA, Int. J. Simul. Multisci. Des. Optim. 4, 27–32 (2010) [CrossRef] [Google Scholar]
  7. M. Zemzami, N. Elhami, M. Itmi, N. Hmina, A new parallel approach for the exploitation of the search space based on PSO algorithm, in International Colloquium in Information Science and Technology (CIST'16), Tangier, Morocco, 2016 [Google Scholar]
  8. J. Chang, S. Chu, J. Roddick, J. Pan, A parallel particle swarm optimization algorithm with communication strategies, J. Inf. Sci. Eng. 21, 809–818 (2005) [Google Scholar]
  9. K. Byung-I, G. Alan, Parallel asynchronous particle swarm optimization, Int. J. Numer. Methods Eng. 67, 578–595 (2006) [CrossRef] [Google Scholar]
  10. M. Rashid, A. Rauf Baig, PSOGP: A genetic programming based adaptable evolutionary hybrid particle swarm optimization, Int. J. Innov. Comput. Inf. Control 6, 287–296 (2010) [Google Scholar]
  11. P. Rabanal, I. Rodríguez, F. Rubio, Parallelizing particle swarm optimization in a functional programming environnement, Algorithms 7, 554–581 (2014) [CrossRef] [Google Scholar]
  12. M. Zemzami, N. Elhami, M. Itmi, N. Hmina, Parallèlisation de la Méthode PSO: découpage de l'espace et traitement par lot des particules, in International Workshop on New Services and Networks (WNSN'16), Khouribga, Morocco, 2016 [Google Scholar]
  13. M.I. Aouad, Conception d'algorithmes hybrides pour l'optimisation de l'énergie mémoire dans les systèmes embarqués et de fonctions multimodales, Doctorat thesis, Henri Poincaré University- Nancy 1, France, 2011 [Google Scholar]
  14. M.E. Hyass, P. Hyass, Good parameters for particle swarm optimization, in: Laboratories Technical Report No. HL 1001, 2010 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.