Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 8, 2017
Article Number A12
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2017005
Published online 10 October 2017
  1. P. Mitschang, M. Blinzler, A. Wöginger, Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends, Compos. Sci. Technol. 63, 2099–2110 (2003) [CrossRef]
  2. S.G. Pantelakis, E.A. Baxevani, Optimization of the diaphragm forming process with regard to product quality and cost, Composites A: Appl. Sci. Manuf. 33, 459–470 (2002) [CrossRef] [EDP Sciences]
  3. B. Likozar, M. Krajnc, A study of heat transfer during molding of elastomers, Chem. Eng. Sci. 63, 3181–3192 (2008) [CrossRef]
  4. M.C. Le et al., Pressure influence on crystallization kinetics during injection molding, J. Mater. Process. Technol. 211, 1757–1763 (2011) [CrossRef]
  5. Z. Cheheb et al., Thermal conductivity of rubber compounds versus the state of cure, Macromol. Mater. Eng. 297, 228–236 (2012) [CrossRef]
  6. S.K. Kim et al., Inverse estimation of thermophysical properties for anisotropic composite, Exp. Therm. Fluid Sci. 27, 697–704 (2003) [CrossRef]
  7. H.S. Park, T.T. Nguyen, Optimization of injection molding process for car fender in consideration of energy efficiency and product quality, J. Comput. Des. Eng. 1, 256–265 (2014)
  8. J.M. Castro, C.C. Lee, Thermal and cure analysis in sheet molding compound compression molds, Polym. Eng. Sci. 27, 218–224 (1987) [CrossRef]
  9. L.M. Abrams, J.M. Castro, Practical guidelines for predicting steady state cure time during sheet molding compound (SMC) compression molding, Polym. Compos. 21, 931–940 (2000) [CrossRef]
  10. M.R. Barone, D.A. Caulk, Optimal thermal design of injection molds for filled thermosets, Polym. Eng. Sci. 25, 608–617 (1985) [CrossRef]
  11. R. Abdalrahman et al., Numerical simulation and design optimisation of an integrally-heated tool for composite manufacturing, Mater. Des. 64, 477–489 (2014) [CrossRef]
  12. M.-C. Jeng et al., Rapid mold temperature control in injection molding by using steam heating, Int. Commun. Heat Mass Transf. 37, 1295–1304 (2010) [CrossRef]
  13. C.-L. Xiao, H.-X. Huang, Optimal design of heating system for rapid thermal cycling mold using particle swarm optimization and finite element method, Appl. Therm. Eng. 64, 462–470 (2014) [CrossRef]
  14. G. Wang et al., Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating, Mater. Des. 31, 382–395 (2010) [CrossRef]
  15. Z.-C. Lin, M.-H. Chou, Design of the cooling channels in nonrectangular plastic flat injection mold, J. Manuf. Syst. 21, 167–186 (2002) [CrossRef] [EDP Sciences]
  16. F.P. Incropera, Fundamentals of heat and mass transfer (John Wiley & Sons, 2006)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.