Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 8, 2017
Article Number A4
Number of page(s) 10
Published online 23 January 2017
  1. Bendsøe MP, Kikuchi N. 1988. Generating optimal topologies in structural design using homogenization. Computer Methods in Applied Mechanics and Engineering, 71, 197–224. [Google Scholar]
  2. Maute K, Allen M. 2004. Conceptual design of aeroelastic structures by topology optimization. Structural and Multidisciplinary Optimization, 27, 27–42. [CrossRef] [Google Scholar]
  3. Guo X, Cheng GD. 2010. Recent development in structural design and optimization. Acta Mechanica Sinica, 26(6), 807–823. [Google Scholar]
  4. Zhu JH, Zhang WH, Xia L. 2016. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 23, 595–622. [Google Scholar]
  5. Pedersen NL. 2000. Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 20, 2–11. [Google Scholar]
  6. Du JB, Olhoff N. 2007. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization, 34(2), 91–110. [CrossRef] [MathSciNet] [Google Scholar]
  7. Tsai TD, Cheng CC. 2013. Structural design for desired eigenfrequencies and mode shapes using topology optimization. Structural and Multidisciplinary Optimization, 47(5), 673–686. [CrossRef] [MathSciNet] [Google Scholar]
  8. Ma ZD, Kikuchi N, Cheng HC. 1995. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering, 121(s1–4), 259–280. [CrossRef] [MathSciNet] [Google Scholar]
  9. Shu L, Wang MY, Fang Z, et al. 2011. Level set based structural topology optimization for minimizing frequency response. Journal of Sound and Vibration, 330(24), 5820–5834. [CrossRef] [Google Scholar]
  10. Yoon GH. 2010. Structural topology optimization for frequency response problem using model reduction schemes. Computer Methods in Applied Mechanics and Engineering, 199(25–28), 1744–1763. [CrossRef] [MathSciNet] [Google Scholar]
  11. Xiang LI, Wang H, Chen LF. 2012. Structural frequency response optimization under bandwidth excitation. Journal of Vibration and Shock, 31(9), 113–117. [Google Scholar]
  12. Yang X, Li Y. 2014. Structural topology optimization on dynamic compliance at resonance frequency in thermal environments. Structural and Multidisciplinary Optimization, 49(1), 81–91. [CrossRef] [MathSciNet] [Google Scholar]
  13. Liu H, Zhang WH, Gao T. 2015. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Structural and Multidisciplinary Optimization, 51(6), 1321–1333. [CrossRef] [MathSciNet] [Google Scholar]
  14. Jog CS. 2002. Topology design of structures subjected to periodic loading. Journal of Sound and Vibration, 253(3), 687–709. [CrossRef] [Google Scholar]
  15. Olhoff N, Du JB. 2005. Topological design of continuum structures subjected to forced vibration, in Proc. of 6th World Congresses of Structural & Multidisciplinary Optimization (WCSMO-6), 30 May–03 June 2005, Rio de Janeiro, Brazil. [Google Scholar]
  16. Cornwell RE, Craig RR, Johnson CP. 1983. On the application of the mode-acceleration method to structural engineering problems. Earthquake Engineering & Structural Dynamics, 11(5), 679–688. [CrossRef] [Google Scholar]
  17. Besselink B, Tabak U, Lutowska A, et al. 2013. A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. Journal of Sound and Vibration, 332(19), 4403–4422. [CrossRef] [Google Scholar]
  18. Ewins DJ. 1984. Modal testing: theory and practice. Research Studies Press, Wiley: New York. [Google Scholar]
  19. Stolpe M, Svanberg K. 2001. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 22(2), 116–124. [Google Scholar]
  20. Zhu JH, Beckers P, Zhang WH. 2010. On the multi-component layout design with inertial force. Journal of Computational and Applied Mathematics, 234(7), 2222–2230. [CrossRef] [Google Scholar]
  21. Akguacute MA, Haftka RT, Wu KC, et al. 2001. Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA Journal, 39(3), 511–516. [Google Scholar]
  22. Adhikari S. 2012. Rates of change of eigenvalues and eigenvectors in damped dynamic system. AIAA Journal, 37(37), 1452–1458. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.