Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 8, 2017
Article Number A9
Number of page(s) 11
Published online 01 March 2017
  1. Abou El Majd B, Desideri J-A, Habbal A. 2010. Aerodynamic and structural optimization of a business-jet wingshape by a Nash game and an adapted split of variables. Mécanique & Industries, 11(3–4), 209–214. [CrossRef] [EDP Sciences] [Google Scholar]
  2. Ouchetto O, Abou El Majd B, Ouchetto H, Essakhi B, Zouhdi S. 2016. Homogenization of periodic structured materials with chiral properties. IEEE Transactions on Antennas and Propagation, 64(5), 1751–1758. [CrossRef] [Google Scholar]
  3. Abou El Majd B, Désidéri J-A, Janka A. 2004. Nested and self-adaptive Bézier parameterizations for shape optimization, International Conference on Control, Partial Differential Equations and Scientific Computing (dedicated to late Professor J.-L. Lions), Beijing, China, 13–16 September, 2004. [Google Scholar]
  4. Abou El Majd B, Désidéri J-A, Duvigneau R. 2008. Multilevel strategies for parametric shape optimization in aerodynamics. European Journal of Computational Mechanics, 17(1–2). [Google Scholar]
  5. Désidéri J-A, Duvigneau R, Abou El Majd B, Tang Z. 2007. Algorithms for efficient shape optimization in aerodynamics and coupled disciplines. 42nd AAAF Congress on Applied Aerodynamics, Sophia-Antipolis, France. [Google Scholar]
  6. Abou El Majd B, Désidéri JA, Do TT, Fourment L. 2005. Multilevel strategies and hybrid methods for shape optimization and application to aerodynamics and metal forming. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems Conference (EUROGEN 2005), September, 2005, pp. 12–14. [Google Scholar]
  7. Duvigneau R, Abou El Majd B, Désidéri J-A. 2008. Towards a self-adaptive parameterization for aerodynamic shape optimization. ESAIM: Proceedings. Vol. 22, pp. 169–174, EDP Sciences, 2008. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. Duvigneau R, Abou El Majd B, Désidéri J-A. 2008. Aerodynamic design using hierarchical shape parameterizations for descent and Particle Swarm Optimization Methods. Numerical Analysis and Scientific Computing for Partial Differential Equations and Their Challenging Applications. CIMNE. [Google Scholar]
  9. Giannakoglou KC, Papadimitriou DI. 2008. Adjoint Methods for Shape Optimization. Archives of Computational Methods in Engineering (State of the Art Reviews), 15(4), 447–488. [CrossRef] [MathSciNet] [Google Scholar]
  10. Jameson A, Hu R, Wang Q. 2012. Adjoint-based aerodynamic optimization of supersonic biplane airfoils. Journal of Aircraft, 49(3), 802–814. [CrossRef] [Google Scholar]
  11. Courty F, Dervieux A, Dervieux B, Hascoet L. 2003. Hascoet, Reverse automatic differentiation for optimum design: from adjoint state assembly to gradient computation. Optimization Methods and Software, 18(5), 615–627. [CrossRef] [MathSciNet] [Google Scholar]
  12. Hascoet L. 2004. TAPENADE: A Tool for Automatic Differentiation of Programs. Proceedings of the ECCOMAS Conference, Jyvaskyla, Finland. [Google Scholar]
  13. Duvigneau R, Chandrashekar P. 2012. Kriging-based optimization applied to flow control. Int. J. for Numerical Methods in Fluids, 69(11), 1701–1714. [CrossRef] [Google Scholar]
  14. Marino E, Salvatori L, Orlando M, Borri C. 2016. Two shape parametrizations for structural optimization of triangular shells. Computers & Structures, 166, 1–10. [CrossRef] [Google Scholar]
  15. Marino E, Salvatori L, Orlando M, Borri C. 2016. Two shape parametrizations for structural optimization of triangular shells. Comput. Struct., 166, 1–10. [CrossRef] [Google Scholar]
  16. Nocedal J, Wright SJ. 2006. Numerical Optimization, 2nd edn. Springer-Verlag: Berlin, Germany. [Google Scholar]
  17. Farin G. 1990. Curves and surfaces for computer-aided geometric design – A practical guide, Rheinboldt W, Siewiorek D, Editors. Academic Press, Boston. [Google Scholar]
  18. Désidéri J-A, Zolésio J-P. 2005. Inverse shape optimization problems and application to airfoils. Control and Cybernetics, 34(1), 165. [MathSciNet] [Google Scholar]
  19. Abou El Majd B. 2014. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering, 6(1), 61–69. [Google Scholar]
  20. Nielsen HB. 2000. UCMINF – An Algorithm For Unconstrained, Nonlinear Optimization, Informatics and Mathematical Modelling (IMM). Technical University of Denmark. [Google Scholar]
  21. Wesseling P. 1992. An introduction to Multigrid Methods. John Wiley & Sons: Chichester. [Google Scholar]
  22. Zhao J, Abou El Majd B, Desideri JA. 2015. Two level correction algorithm for parametric shape inverse optimization. International Journal of Engineering and Mathematical Modelling, 2(1), 17–30. [Google Scholar]
  23. Zhao J, Abou El Majd B, Desideri JA. 2007. Two level correction algorithms for model problems. INRIA. [Google Scholar]
  24. Sederberg T, Parry S. 1986. Free-from deformation of solid geometric models. ACM SIGGRAPH Computer Graphics, 20(4), 151–160. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.