Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 6, 2015
Article Number A6
Number of page(s) 6
DOI https://doi.org/10.1051/smdo/2015006
Published online 23 December 2015
  1. Latroche MJ. 2004. Structural and thermodynamic properties of metallic hydrides used for energy storage. Phys. Chem. Solids, 65, 517. [CrossRef] [Google Scholar]
  2. Zinti E, Harder A. 1931. Uber Alkalihydride. Z. Phys. Chem. Abt. B, 14, 265. [Google Scholar]
  3. Gaydon AG, Pearse RWB. 1939. The spectrum of rubidium hydride, RbH. II. Potential curves, wave functions and intensity distribution. Proc. Roy. Soc. A, 173, 28–37, 37–47. [CrossRef] [Google Scholar]
  4. Hochheimer HD, Strossner K, Hale W, Baronowski B. 1987. High-pressure studies of NaH to 54 GPa. Phys. Rev. B, 36, 7664–7667. [CrossRef] [Google Scholar]
  5. Jain DC. 1963. Franck-Condon Factors and r-centroids for the Band System of the RbH Molecule. Proc. Phys. Soc., 81, 171–174. [CrossRef] [Google Scholar]
  6. Stwally WC, Zemke WT, Yang SC. 1991. Spectroscopy and structure of the alkali hydride diatomic molecules and their ions. J. Phys. Chem. Ref. Data, 20, 153. [NASA ADS] [CrossRef] [Google Scholar]
  7. Hooper J, Zurek E. 2012. Rubidium polyhydrides under pressure: emergence of the linear H3 species. Chem. A Eur. J., 18, 5013. [CrossRef] [Google Scholar]
  8. Zrafi W, Ovjia B, Berriche H, Gadea FX. 2006. Ab initio adiabatic and diabatic energies and dipole moments of the RbH molecule. J. Mol. Struct.: Theochem, 777, 87–97. [CrossRef] [Google Scholar]
  9. Ahuja R, Eriksson O, Johansson B. 1999. Theoretical search for the CrB-type high-pressure phase in LiH, NaH, KH and RbH. Physica B, 265, 87. [CrossRef] [Google Scholar]
  10. Fatmi M, Ghebouli B, Ghebouli MA, Bouhemadou A, Binanran S. 2012. Structural, electronic, optical and thermodynamic properties of NaxRb1−xH and NaxK1−xH alloys. J. Phys. Chem. Solids, 73, 1–7. [CrossRef] [Google Scholar]
  11. Hooper J, Baettig P, Zurek E. 2012. Pressure Induced Structural Transitions in KH, RbH and CsH. J. Appl. Phys., 111, 112611. [CrossRef] [Google Scholar]
  12. Sudba Priyanga G, Asuini Meenaatci AT, Rajeswara Palanichamy R, Iyakutti K. 2014. Structural, electronic and elastic properties of alkali hydrides (MH: M = Li, Na, K, Rb, Cs): Ab initio study. Comput. Mater. Sci., 84, 206–216. [CrossRef] [Google Scholar]
  13. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC. 2002. First-principles computation of material properties: the ABINIT software Project. Comput. Mater. Sci., 25, 478. [CrossRef] [Google Scholar]
  14. Blaha KSP, Madsen GKH, Kvasnicka D, Luitz J. 2001. An augmented plane wave + local orbitals program for calculating crystal properties, Universität Wien, Austria. [Google Scholar]
  15. Perdew JP, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  16. Troullier N, Martins JL. 1991. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43, 993. [CrossRef] [Google Scholar]
  17. Kohn W, Sham LJ. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133. [CrossRef] [MathSciNet] [Google Scholar]
  18. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045. [CrossRef] [Google Scholar]
  19. Monkhorst HJ, Pack JD. 1976. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188. [CrossRef] [MathSciNet] [Google Scholar]
  20. Zinenko VI, Fedorov AS. 1994. First principle calculations of alkali hydride electronic structures. Sov. Phys. Solid State, 36, 742. [Google Scholar]
  21. Barrera GD, Colognesi D, Mitchell PCH, Ramirez Cuesta AJ. 2005. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides. Chem. Phys., 317, 119. [CrossRef] [Google Scholar]
  22. Novakovic N, Radisavljevic I, Colognesi D, Ostojic S, Ivanovic N. 2007. First principle calculations of alkali hydride electronic structures. J. Phys. Condens. Matter, 19, 406211. [CrossRef] [Google Scholar]
  23. Sudha Priyanga G, Asvini Meenaatci AT, Rajeswara Palanichamy R, Iyakutti K. 2014. Structural, electronic and elastic properties of alkali hydrides (MH: M = Li, Na, K, Rb, Cs): Ab initio study. Comput. Mater. Sci., 84, 206. [CrossRef] [Google Scholar]
  24. Reshak H, Jamal M. 2012. DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic). J. Alloys Compd., 543, 147. [CrossRef] [Google Scholar]
  25. Engebretsen L. 1995. Electronic structure calculations of the elastic properties of alkali hydrides. Graduation Thesis, Royal institute of technology KTH, Stockholm. [Google Scholar]
  26. Zhang J, Zhang L, Lui T, Ma Y. 2007. Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study. Phys. Rev. B., 75, 104115. [CrossRef] [Google Scholar]
  27. Hochheimer HD, Strossner K, Honle W, Baranowski B, Filipek F. 1985. High pressure X-ray investigation of the alkali hydrides NaH, KH, RbH and CsH. Less J. Comm. Met., 107, L13. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.