Open Access
Int. J. Simul. Multisci. Des. Optim.
Volume 5, 2014
Article Number A15
Number of page(s) 6
Published online 10 February 2014
  1. Branke J, Deb K, Miettinen K, Słowinski R. 2008. Multi-objective optimization. Springer Berlin/Heidelberg, New York. [Google Scholar]
  2. Coello C, Dehuri S, Ghosh S. 2009. Swarm intelligence for multi-objective problems in data mining. Springer, Berlin/Heidelberg, New York. [CrossRef] [Google Scholar]
  3. Knowles J, Nakayama H. 2008. Meta-modeling in multiobjective optimization. Springer, Berlin/Heidelberg, New York. [Google Scholar]
  4. Kshetrapalapuram KK, Kirley M. 2005. Mining classification rules using evolutionary multi-objective algorithms. Knowledge-based intelligent, information and engineering systems, 3683, Springer, Berlin/Heidelberg, New York. [Google Scholar]
  5. Freitas AA. 1998. On objective measures of rule surprisingness, in Principles of data mining and knowledge discovery, Springer Berlin, Heidelberg, pp. 1–9. [Google Scholar]
  6. Rowland J. 2003. Generalisation and model selection in supervised learning with evolutionary computation, in Applications of Evolutionary Computing, Springer Berlin, Heidelberg, pp. 119–130. [Google Scholar]
  7. Obayashi S. 2005. Evolutionary multiobjective optimization and visualization, in New Developments in Computational Fluid Dynamics, Springer Berlin, Heidelberg, pp. 175–185. [Google Scholar]
  8. Witkowski K, Tushar M. 2009. Decision making in multiobjective optimization for industrial application-Data mining and visualization of Pareto, In Proceedings of 7th European LS-DYNA Conference, USA, 416–423. [Google Scholar]
  9. Deb K. 2007. Current trends in evolutionary multi-objective optimization. Int. J. Simul. Multidisci. Des. Optim., 2, 1–8. [Google Scholar]
  10. Bruyneel M, Colson B, Jetteur P, Raick C, Remouchamps A, Grihon S. 2008. Recent progress in the optimal design of composite structures: industrial solution procedures on case studies. Int. J. Simul. Multidisci. Des. Optim., 2, 283–288. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Bedingfield SE, Smith KA. 2003. Evolutionary Rule Generation classification and its Application to multi-class data. In Computational Science – ICCS 2003, Springer Berlin Heidelberg, 868–876. [CrossRef] [Google Scholar]
  12. Mosavi A. 2010. Multiple criteria decision-making pre-processing using data mining tools. IJCSI, International Journal of Computer Science Issues, 7, 26–34. [Google Scholar]
  13. Arularasan V. 2008. Modeling and simulation of a parallel plate heat sink using computational fluid dynamics. Int. J. Adv. Manuf. Technol., 5, 172–183. [Google Scholar]
  14. Esmaeili M, Mosavi A. 2010. Variable reduction for multi-objective optimization using data mining techniques; application to aerospace structures. Proceedings of the 2nd International IEEE Conference on Computer Engineering and Technology, 5, 333–337. [Google Scholar]
  15. Olcer AI. 2007. A hybrid approach for multi-objective combinatorial optimization problems in ship design and shipping. Computers & Operations Research, 35, 2760–2775. [CrossRef] [Google Scholar]
  16. Toussaint L, Lebaal N, Schlegel D, Gomes S. 2010. Automatic optimization of air conduct design using experimental data and numerical results. Int. J. Simul. Multidisci. Des. Optim., 4, 77–83. [CrossRef] [Google Scholar]
  17. Bo Y, Any X. 2008. Aerodynamic optimization of 3D wing based on iSIGHT. Appl. Math. Mech. -Engl. Ed., 5, 603–610. [Google Scholar]
  18. Bluntzer J-B, Gomes S, Bassir DH, Varret A, Sagot JC. 2008. Direct multi-objective optimization of parametric geometrical models stored in PLM systems to improve functional product design. Int. J. Simul. Multidisci. Des. Optim., 2, 83–90. [CrossRef] [EDP Sciences] [Google Scholar]
  19. Vik P, Luís D, Guilherme P, Oliveira J. 2010. Automatic generation of computer models through the integration of production systems design software tools. Int. J. Simul. Multidisci. Des. Optim., 4, 141–148. [CrossRef] [Google Scholar]
  20. Mosavi A. 2009. Hydrodynamic design and optimization: application to design a general case for extra equipments on the submarine’s hull. Proceedings of the International IEEE Conference on Computer Technology and Development, 2, 139–143. [Google Scholar]
  21. Filomeno R, Coelho C, Breitkopf P, Knopf-Lenoir C. 2008. Model reduction for multidisciplinary optimization-application to a 2D wing. Struct. Multidisc. Optim., 7, 29–48. [CrossRef] [Google Scholar]
  22. Albers A, Leon-Rovira N. 2009. Development of an engine crankshaft in a framework of computer-aided innovation. Computers in Industry, 60, 604–612. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.