Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 4, Number 2, April 2010
Page(s) 63 - 69
Published online 21 July 2011
  1. C. Kowalski. Conséquences pathologiques de la brièveté des muscles gastrocnémiens, Médecine et Chirurgie du Pied, 22(3), 159-180, (2006) [Google Scholar]
  2. P. Allard, J.P. Blanchi. La biomécanique (Paris, France : PUF Collection Que sais-je ? 2000) [Google Scholar]
  3. P.R. Cavanagh, F.G. Hewitt Jr., J.E. Perry. In-shoe plantar pressure measurement: a review, The Foot, 2(4), 185-194, (1992) [Google Scholar]
  4. W. Herzog, B. Nigg, L.J. Read, E. Olsson. Asymmetries in ground reaction force patterns in normal human gait, Med. and Sci. Sport Exer., 21, 110-114, (1989) [CrossRef] [Google Scholar]
  5. S. Meyring, R.R. Diehl, T.L. Milani, E.M. Hennig, P. Berlit. Dynamic plantar pressure distribution measurements in hemiparetic patient, Clin. Biomech., 12(1), 60-65, (1997) [Google Scholar]
  6. J. Perry. Gait Analysis. Normal and Pathological Gait (Thorfare, USA : SLACK Incorporated, 1992) [Google Scholar]
  7. J. Perttunen. Foot loading in normal and pathological walking, (University of Jyvaskyla, Finland : Ph.D. thesis, 2002) [Google Scholar]
  8. E. Viel. La marche humaine, la course et le saut, (Paris, France : Masson, 2000) [Google Scholar]
  9. F.A. Asphahani, H.C. Lee. Portable system for analyzing human gait (United States patent US6836744 B1, 2004) [Google Scholar]
  10. A. Faivre. Conception et validation dún nouvel outil dánalyse clinique de la marche, (University of Franche- Comté , France : Ph. D. thesis, 2003) [Google Scholar]
  11. T.S. Gross, R.P. Bunch. Measurement of discrete vertical in-shoe stress with piezoelectri transducers, J. Biomed. Eng., 10(3), 261-265, (1988) [Google Scholar]
  12. C. Kirtley, K. Tong. Insole gyro system for gait analysis, Proceedings of the RESNA Annual Conference (2000) [Google Scholar]
  13. S. Miyazaki, H. Iwakura. Foot-force measuring device for clinical assesment of pathological gait, Medical and Biological Engineering and Computing, 16(4), 429-436, (1978) [Google Scholar]
  14. H.S. Ranu. Miniature load cells for the measurement of foot-ground reaction forces and centre of foot pressire during gait, J. Biomed. Eng., 8(2), 175-177, (1986) [Google Scholar]
  15. G.A. Spolek, F.G. Lippert. An instrumented shoe; a portable force measuring device, Journal of Biomechanics, 9(12), 779-783, (1976) [Google Scholar]
  16. A. Faivre, M. Dahan, B. Parratte. Instrumented shoe sole and shoe with instrumented sole, (European patent EP1464281 B1, 2006) [Google Scholar]
  17. A. Faivre, M. Dahan, B. Paratte, G. Monnier. Instrumented shoe for pathological gait assessment, Mechanics research Communications, 31, 627-632, (2004) [Google Scholar]
  18. C. Bertsch, H. Unger, W. Winelmann, D. Rosenbaum. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children, Gait Posture, 19, 235-242, (2004) [Google Scholar]
  19. E.M. Hennig, T.L. Milani. In-shoe pressure distribution for running in various types of footwear, J. Appl. Biomech., 11(3), 299-310, (1995) [Google Scholar]
  20. K. Grimmer, J. Williams, T.K. Gill. The associations between adolescent head-on-neck posture, backpack mass, and anthropometric features, Spine, 24, 2262-2267, (1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.