Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 3, Number 4, December 2009
Page(s) 419 - 423
DOI https://doi.org/10.1051/ijsmdo/2009018
Published online 20 July 2011
  1. L. J.Gibson, M. F. Ashby. Cellular solaids, Cambridge: Per-gamon Press Ltd., (1997). [Google Scholar]
  2. X. E. Guo, L. J. Gibson, Behavior of intact and damaged honeycombs: a finite element study, Int. J. Mech. Sci. 41, 85-105, (1999). [CrossRef] [Google Scholar]
  3. J. S. Huang, F. M. Chang, Effects of curved cell edges on the stiffness and strength of two-dimensional cellular solids, Compos. Struct. 69, 183-191, (2005). [CrossRef] [Google Scholar]
  4. J. L. Grenestedt, Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids, J. Mech. Phys. Solids 46, 29-50, (1998). [CrossRef] [Google Scholar]
  5. M. J. Silva, L. J. Gibson, The effects of non-periodic micro-structure and defects on the compressive strength of two-dimensional cellular solids Int. J. Mech. Sci. 39, 549-563, (1997). [Google Scholar]
  6. P. R. Onck, E. W. Andrews, L. J. Gibson, Size effects in ductile cellular solids. Part I: modeling, Int. J. Mech. Sci. 43, 681-699, (2001). [CrossRef] [Google Scholar]
  7. N. Lassoued, P. Babin, G. D. Valle, M. F. Devaux, A. L. Reguerre, Granulometry of bread crumb grain: Contribu-tions of 2D and 3D image analysis at different scale, Food Res. Int. 40, 1087-1097, (2007). [CrossRef] [Google Scholar]
  8. S. Rjafiallah, S. Guessasma, D. Lourdin, Effective properties of biopolymer composites: A three-phase finite element model, Composites Part a-Applied Science and Manufacturing 40, 130-136, (2009). [CrossRef] [Google Scholar]
  9. S. Guessasma, A. Hamdi, D. Lourdin, Linear modelling of biopolymer systems and related mechanical properties, Carbohydrate Polymers 76, 381-388, (2009). [CrossRef] [Google Scholar]
  10. M. G. Scanlon, M. C. Zghal, Bread properties and crumb structure, Food Res. Int. 34, 841-864, (2001). [CrossRef] [Google Scholar]
  11. H. Chanvrier, L. Chaunier, P. Colonna, G. D. Valle, D. Lourdin, Structural basis of the crispy properties of cereal products. Using cereal science and technology for the benefit of consumers, Proceedings of the 12th Interna-tional ICC Cereal and Bread Congress, Harrogate, UK, 23-26th May 2004,480-487, (2005). [Google Scholar]
  12. C. Keetels, T. vanVliet, P. Walstra, Relationship between the sponge structure of starch bread and its mechanical properties, Journal of Cereal Science 24, 27-31, (1996). [CrossRef] [Google Scholar]
  13. L. Hailemariam, M. Okos, O. Campanella, A mathematical model for the isothermal growth of bubbles in wheat dough, J. Food Eng. 82, 466-477, (2007). [CrossRef] [Google Scholar]
  14. M. Peleg, Review: Mechanical properties of dry cellular solid foods, Food Science and Technology International 3, 227-240, (1997). [CrossRef] [Google Scholar]
  15. S. Guessasma, P. Babin , G. Della Valle, R. Dendievel, Re-lating cellular structure of open solid food foams to their Young's modulus : finite element calculation, International Journal of Solids and Structures 45, 2881-2896, (2008). [CrossRef] [Google Scholar]
  16. E. J. Garboczi, J. G. Berryman, Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations, Mech. Mater. 33, 455-470, (2001). [CrossRef] [Google Scholar]
  17. E. J. Garboczi, A. R. Day, Algorithm for computing the effec-tive elastic properties of heterogeneous materials - 3-dimensional results for composites with equal phase Poisson ratios, J. Mech. Phys. Solids 43, 1349-1362, (1995). [CrossRef] [Google Scholar]
  18. S. Guessasma, A. Hamdi, D. Lourdin, Modelling of biopol-ymer systems and related mechanical properties, Carbo-hydrate Polymers 76, 381-388, (2009). [CrossRef] [Google Scholar]
  19. H. Chanvrier, P. Colonna, G. Della Valle, D. Lourdin, Structure and mechanical behaviour of corn flour and starch-zein based materials in the glassy state , Carbohy-drate Polymers 59, 109-119, (2005). [CrossRef] [Google Scholar]
  20. S. Guessasma, L. Chaunier, D. Lourdin, Finite element modelling of the mechanical behaviour of vitreous starch/protein composite , J. Food Eng. 98, 150-158. [Google Scholar]
  21. T. C. Ovaert, B. R. Kim, J. J. Wang, Multi-parameter models of the viscoelastic/plastic mechanical properties of coatings via combined nanoindentation and non-linear finite element modeling, Progress in Organic Coatings 47, 312-323, (2003). [CrossRef] [Google Scholar]
  22. S. Guessasma, M. Sehaki, D. Lourdin, A. Bourmaud, Vis-coelasticity properties of biopolymer composite materials determined using finite element calculation and nanoindentation , Comput. Mater. Sci. 44, 371-377, (2008). [CrossRef] [Google Scholar]
  23. S. Guessasma, N. Benseddiq, Cohesive bonding interface model for the effective properties of randomly structured composites , Comput. Mater. Sci. 47, 186-192, (2009). [CrossRef] [Google Scholar]
  24. S. Guessasma, H. Bassir, Identification of mechanical properties of biopolymer composites sensitive to interface effect using hybrid approach , Mech. Mater. 42, 344-353, (2010). [CrossRef] [Google Scholar]
  25. J. D. Sherwood, Packing of spheroids in three-dimensional space by random sequential addition , J. Phys. A-Math. Gen. 30, L839-L8,43(1997). [Google Scholar]
  26. S. Guessasma, D. Bassir, Optimization of the mechanical properties of virtual porous solids using a hybrid ap-proach , Acta Mater. 58, 716-725, (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.