Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 1, Number 1, October 2007
Page(s) 9 - 17
DOI https://doi.org/10.1051/ijsmdo:2007002
Published online 12 December 2007
  1. Z.H. Zhong, J. Macherle, Static contact problems - a review. Eng. Computation 9, 3–37 (1992) [CrossRef] [Google Scholar]
  2. A. Klarbring, Mathematical programming in contact problems, In MH. Aliabdali and CA. Brebbia, editors, Computational methods in contact mechanics, pages 233–263. Southampton: Computational Mechanics Publications (1993) [Google Scholar]
  3. P. Wriggers, Finite element algorithms for contact problems. Arch. Comput. Method. E. 2, 1–49 (1995) [CrossRef] [Google Scholar]
  4. N. Kikuchi, J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite elements, Philadelphia: SIAM (1988) [Google Scholar]
  5. Z.H. Zhong, Finite element procedures in contact-impact problems, Oxford University Press (1993) [Google Scholar]
  6. P. Wriggers, Computational contact mechanics (John Wiley & Sons, 2002) [Google Scholar]
  7. A.B. Chaudhary, K.J. Bathe, A solution method for static and dynamic analysis of three dimensional contact problems with friction. Comput. Struct. 24, 855–873 (1986) [CrossRef] [Google Scholar]
  8. H.A. Parisch, Consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. Int. J. Numer. Meth. Eng. 28, 1803–1812 (1989) [CrossRef] [Google Scholar]
  9. P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Method Appl. M. 92, 353–375 (1991) [Google Scholar]
  10. J.C. Simo, T.A. Laursen, An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992) [CrossRef] [Google Scholar]
  11. G. de Saxcé, Z.-Q. Feng, New inequality and functional for contact with friction: The implicit standard material approach. Mech. Struct. Mach. 19 301–325 (1991) [CrossRef] [Google Scholar]
  12. G. de Saxcé, Z.-Q. Feng, The bi-potential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Mathematical and Computer Modeling 28, 225–245 (1998) [CrossRef] [Google Scholar]
  13. A. Klarbring, Mathematical programming and augmented Lagrangian methods for frictional contact problems. In A. Curnier, editor, Contact Mechanics Int. Symp. (1992) PPUR. [Google Scholar]
  14. P.W. Chritensen, A. Klarbring, J.S. Pang, N.N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Int. J. Numer. Meth. Eng. 42, 145–173 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Wriggers, T. Vu Van, E. Stein, Finite element formulation of large deformation impact contact problems with friction. Comput. Struct. 37, 319–331 (1990) [CrossRef] [Google Scholar]
  16. T.A. Laursen, V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Meth. Eng. 40, 863–886 (1997) [CrossRef] [MathSciNet] [Google Scholar]
  17. T.A. Laursen, G.R. Love, Improved implicit integrators for transient impact problems geometric admissibility within the conserving framework. Int. J. Numer. Meth. Eng. 53, 245–274 (2002) [CrossRef] [MathSciNet] [Google Scholar]
  18. G.R. Love, T.A. Laursen, Improved implicit integrators for transient impact problems: dynamic frictional dissipation within an admissible conserving framework. Comput. Method. Appl. M. 192, 2223–2248 (2003) [CrossRef] [Google Scholar]
  19. O.C. Zienkiewicz, W.L. Wood, L.W. Hine, R.L. Taylor, A unified set of single step algorithms. part 1. general formulation and application. Int. J. Numer. Meth. Eng. 20, 1529–1552 (1984) [CrossRef] [Google Scholar]
  20. M. Jean, Dynamics with partially elastic shocks and dry friction: double scale method and numerical approach, In 4th Meeting on unilateral problems in structural analysis (1989) [Google Scholar]
  21. M.A. Crisfield, Non-linear finite element analysis of solid and structures (Wiley, 1991) [Google Scholar]
  22. J.C. Simo, T.J.R. Hughes, Computational inelasticity, (Springer-Verlag, New York, 1998) [Google Scholar]
  23. K.K. Tamma, R.R. Namburu, A robust self - starting explicit computational methodology for structural dynamic applications: architecture and representations. Int. J. Numer. Meth. Eng. 30, 1441–1454 (1990) [CrossRef] [Google Scholar]
  24. J.C. Simo, K.K. Wong, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Meth. Eng. 31, 19–52 (1991) [CrossRef] [Google Scholar]
  25. Z.-Q. Feng, 2D or 3D frictional contact algorithms and applications in a large deformation context. Commun. Numer. Meth. En. 11, 409–416 (1995) [CrossRef] [Google Scholar]
  26. Z.-Q. Feng, http://gmfe16.cemif.univ-evry.fr:8080/~feng/FerImpact.html [Google Scholar]
  27. Z.-Q. Feng, Some test examples of 2D and 3D contact problems involving coulomb friction and large slip. Mathematical and Computer Modeling 28(4-8), 469–477 (1998) Special issue: Recent Advances in Contact Mechanics. [Google Scholar]
  28. Z.-Q. Feng, F. Peyraut, N. Labed, Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies. Int. J. Eng. Sci. 41, 2213–2225 (2003) [CrossRef] [Google Scholar]
  29. S.H. Ko, B. Kwak, Frictional dynamic contact analysis using finite element nodal displacement description. Comput. Struct. 42, 797–807 (1992) [CrossRef] [Google Scholar]
  30. J.O. Kim, B. Kwak, Dynamic analysis of two-dimensional frictional contact by linear complementarity problem formulation. Int. J. Solids Struct. 33, 4605–4624 (1996) [CrossRef] [Google Scholar]
  31. M. Hjiaj, Z.-Q. Feng, G. de Saxcé, Z. Mróz, There-dimensional finite element computations for frictional contact problems with non-associated sliding rule. Int. J. Numer. Meth. Eng. 60, 2045–2076 (2004) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.