Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 1, Number 1, October 2007
Page(s) 9 - 17
DOI https://doi.org/10.1051/ijsmdo:2007002
Published online 12 December 2007
  1. Z.H. Zhong, J. Macherle, Static contact problems - a review. Eng. Computation 9, 3–37 (1992) [CrossRef]
  2. A. Klarbring, Mathematical programming in contact problems, In MH. Aliabdali and CA. Brebbia, editors, Computational methods in contact mechanics, pages 233–263. Southampton: Computational Mechanics Publications (1993)
  3. P. Wriggers, Finite element algorithms for contact problems. Arch. Comput. Method. E. 2, 1–49 (1995) [CrossRef]
  4. N. Kikuchi, J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite elements, Philadelphia: SIAM (1988)
  5. Z.H. Zhong, Finite element procedures in contact-impact problems, Oxford University Press (1993)
  6. P. Wriggers, Computational contact mechanics (John Wiley & Sons, 2002)
  7. A.B. Chaudhary, K.J. Bathe, A solution method for static and dynamic analysis of three dimensional contact problems with friction. Comput. Struct. 24, 855–873 (1986) [CrossRef]
  8. H.A. Parisch, Consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. Int. J. Numer. Meth. Eng. 28, 1803–1812 (1989) [CrossRef]
  9. P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Method Appl. M. 92, 353–375 (1991) [CrossRef] [MathSciNet]
  10. J.C. Simo, T.A. Laursen, An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992) [CrossRef]
  11. G. de Saxcé, Z.-Q. Feng, New inequality and functional for contact with friction: The implicit standard material approach. Mech. Struct. Mach. 19 301–325 (1991) [CrossRef]
  12. G. de Saxcé, Z.-Q. Feng, The bi-potential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Mathematical and Computer Modeling 28, 225–245 (1998) [CrossRef]
  13. A. Klarbring, Mathematical programming and augmented Lagrangian methods for frictional contact problems. In A. Curnier, editor, Contact Mechanics Int. Symp. (1992) PPUR.
  14. P.W. Chritensen, A. Klarbring, J.S. Pang, N.N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Int. J. Numer. Meth. Eng. 42, 145–173 (1998) [CrossRef] [MathSciNet]
  15. P. Wriggers, T. Vu Van, E. Stein, Finite element formulation of large deformation impact contact problems with friction. Comput. Struct. 37, 319–331 (1990) [CrossRef]
  16. T.A. Laursen, V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Meth. Eng. 40, 863–886 (1997) [CrossRef] [MathSciNet]
  17. T.A. Laursen, G.R. Love, Improved implicit integrators for transient impact problems geometric admissibility within the conserving framework. Int. J. Numer. Meth. Eng. 53, 245–274 (2002) [CrossRef] [MathSciNet]
  18. G.R. Love, T.A. Laursen, Improved implicit integrators for transient impact problems: dynamic frictional dissipation within an admissible conserving framework. Comput. Method. Appl. M. 192, 2223–2248 (2003) [CrossRef]
  19. O.C. Zienkiewicz, W.L. Wood, L.W. Hine, R.L. Taylor, A unified set of single step algorithms. part 1. general formulation and application. Int. J. Numer. Meth. Eng. 20, 1529–1552 (1984) [CrossRef]
  20. M. Jean, Dynamics with partially elastic shocks and dry friction: double scale method and numerical approach, In 4th Meeting on unilateral problems in structural analysis (1989)
  21. M.A. Crisfield, Non-linear finite element analysis of solid and structures (Wiley, 1991)
  22. J.C. Simo, T.J.R. Hughes, Computational inelasticity, (Springer-Verlag, New York, 1998)
  23. K.K. Tamma, R.R. Namburu, A robust self - starting explicit computational methodology for structural dynamic applications: architecture and representations. Int. J. Numer. Meth. Eng. 30, 1441–1454 (1990) [CrossRef]
  24. J.C. Simo, K.K. Wong, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Meth. Eng. 31, 19–52 (1991) [CrossRef]
  25. Z.-Q. Feng, 2D or 3D frictional contact algorithms and applications in a large deformation context. Commun. Numer. Meth. En. 11, 409–416 (1995) [CrossRef]
  26. Z.-Q. Feng, http://gmfe16.cemif.univ-evry.fr:8080/~feng/FerImpact.html
  27. Z.-Q. Feng, Some test examples of 2D and 3D contact problems involving coulomb friction and large slip. Mathematical and Computer Modeling 28(4-8), 469–477 (1998) Special issue: Recent Advances in Contact Mechanics.
  28. Z.-Q. Feng, F. Peyraut, N. Labed, Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies. Int. J. Eng. Sci. 41, 2213–2225 (2003) [CrossRef]
  29. S.H. Ko, B. Kwak, Frictional dynamic contact analysis using finite element nodal displacement description. Comput. Struct. 42, 797–807 (1992) [CrossRef]
  30. J.O. Kim, B. Kwak, Dynamic analysis of two-dimensional frictional contact by linear complementarity problem formulation. Int. J. Solids Struct. 33, 4605–4624 (1996) [CrossRef]
  31. M. Hjiaj, Z.-Q. Feng, G. de Saxcé, Z. Mróz, There-dimensional finite element computations for frictional contact problems with non-associated sliding rule. Int. J. Numer. Meth. Eng. 60, 2045–2076 (2004) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.