期号
Int. J. Simul. Multidisci. Des. Optim.
卷号 12, 2021
Computation Challenges for engineering problems
文献编号 3
页数 11
DOI https://doi.org/10.1051/smdo/2021006
网上发表时间 2021年5月28日
  1. E. Johann, Rolls Royce Deutschland Ltd and Co KG, Compressor for an aircraft engine. United States patent US 7,207,772, 2007 [Google Scholar]
  2. K.H. Lüdtke, Process centrifugal compressors: basics, function, operation, design, application. Springer Science & Business Media, 2004 [CrossRef] [Google Scholar]
  3. J.A. Marcos, United Technologies Corp, Control of low compressor vanes and fuel for a gas turbine engine. United States patent US 5,133,182, 1992 [Google Scholar]
  4. L.J. Cheshire, The design and development of centrifugal compressors for aircraft gas turbines, Proc. Insti. Mech. Eng. 153, 426–440 (1945) [Google Scholar]
  5. M. Orkisz, S. Stawarz, Modeling of turbine engine axial-flow compressor and turbine characteristics, J. Propuls. Power 16, 336–339 (2000) [Google Scholar]
  6. R. Kervistin, Safran Aircraft Engines SAS. Cooling system for a gas turbine engine compressor. United States patent US 5,297,386, 1994 [Google Scholar]
  7. C. Balan, W. Tabakoff, Axial flow compressor performance deterioration, in: 20th Joint Propulsion Conference, 1984, p. 1208 [Google Scholar]
  8. S. Kim, C. Son, K. Kim, Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system, Energy 119, 199–210 (2017) [Google Scholar]
  9. J.F. Seda, L.W. Dunbar, P.N. Szucs, J.C. Brauer, J.E. Johnson, General Electric Co, Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor. United States patent US 6,732,502, 2004 [Google Scholar]
  10. A.H. Stenning, Inlet distortion effects in axial compressors [Google Scholar]
  11. A.F. El-Sayed, Aircraft propulsion and gas turbine engines (CRC Press, 2008) [Google Scholar]
  12. P. Spittle, Gas turbine technology, 2003. http://users.encs.concordia.ca/∼kadem/Rolls%20Royce.pdfS (accessed November 20, 2011) [Google Scholar]
  13. D. Coupe, B.J.G. Dambrine, J.N. Mahieu, Safran aircraft engines SAS, 2015. Aircraft propeller blade, United States Patent 9, 162, 750 [Google Scholar]
  14. L. Witek, Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration, Eng. Fail. Anal. 16, 2163–2170 (2009) [Google Scholar]
  15. A.L. Hutson, M. Niinomi, T. Nicholas, D. Eylon, Effect of various surface conditions on fretting fatigue behavior of Ti–6Al–4V, Int. J. Fatigue 24, 1223–1234 (2002) [CrossRef] [Google Scholar]
  16. D. Nowell, D. Dini, D.A. Hills, Recent developments in the understanding of fretting fatigue, Eng. Fract. Mech. 73, 207–222 (2006) [Google Scholar]
  17. N.S. Xi, P.D. Zhong, H.Q. Huang, H. Yan, C.H. Tao, Failure investigation of blade and disk in first stage compressor, Eng. Fail. Anal. 7, 385–392 (2000) [Google Scholar]
  18. A. Kermanpur, H.S. Amin, S. Ziaei-Rad, N. Nourbakhshnia, M. Mosaddeghfar, Failure analysis of TI6AL4V gas turbine compressor blades, Eng. Fail. Anal. 15, 1052–1064 (2008) [Google Scholar]
  19. F. Ferdaus, R. Ganapathi, Computational and experimental testing of aircraft bell nozzle, Int. J. Veh. Struct. Syst. (IJVSS) 11 (2019) [Google Scholar]
  20. F. Ferdaus, R. Sridhar, G. Sathishkumar, S. Sivabalan, Computational analysis of straight nozzle: technical note, Int. J. Veh. Struct. Syst. (2019). DOI: http://dx.doi.org/10.4273/ijvss.11.2.15 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.