期号
Int. J. Simul. Multidisci. Des. Optim.
卷号 10, 2019
Special Issue - Uncertainty-Based Design Optimization
文献编号 A5
页数 11
DOI https://doi.org/10.1051/smdo/2019006
网上发表时间 2019年3月15日
  1. S. Kumar et al., Deep cryogenic treatment of AISI M2 tool steel and optimization of its wear characteristics using Taguchi approach, Arab. J. Sci. Eng. 43 , 1–13 (2018) [CrossRef] [Google Scholar]
  2. E. Lassner et al., Tungsten, tungsten alloys, and tungsten compounds, in: Ullmann's Encyclopedia of Industrial Chemistry, 1996 [Google Scholar]
  3. E.E. Donath, M. Hoering, Early coal hydrogenation catalysis, Fuel Process. Technol. 1 , 3–20 (1977) [CrossRef] [Google Scholar]
  4. A.M. Brown, E.M. Klier, Machinable metal-matrix composite and liquid metal inflation process for making same, U.S. Patent No. 5,511,603, 30 April 1996. [Google Scholar]
  5. V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life ofM2 HSS drill, J. Mater. Process. Technol. 206 , 467–472 (2008) [CrossRef] [Google Scholar]
  6. J. Patscheider, S. Vepřek, Application of low-pressure hydrogen plasma to the conservation of ancient iron artifacts, Stud. Conserv. 31 , 29–37 (1986) [CrossRef] [Google Scholar]
  7. S. Kalia, S.-Y. Fu (Eds.), Polymers at cryo-genic temperatures (Springer, Berlin, Heidelberg, 2013) [CrossRef] [Google Scholar]
  8. A.A. Baker, M.L. Scott, Composite materials for aircraft structures (AIAA, Reston, VA, 2004) [Google Scholar]
  9. R.B. Scott, Cryogenic engineering (Van Nostrand, Princeton, NJ, 1959) [Google Scholar]
  10. S. Balasubramanian, M.K. Gupta, K.K. Singh, Cryogenics and its application with reference to spice grinding: a review, Crit. Rev. Food Sci. Nutr. 52 , 781–794 (2012) [CrossRef] [Google Scholar]
  11. C. Cai et al., Rock pore structure damage due to freeze during liquid nitrogen fracturing, Arab. J. Sci. Eng. 39 , 9249–9257 (2014) [CrossRef] [Google Scholar]
  12. S.Y. Hong, Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tool. Manuf. 41 , 1417–1437 (2001) [CrossRef] [Google Scholar]
  13. M. El Mehtedi et al., Analysis of the effect of deep cryogenic treatment on the hardness and microstructure of X30 CrMoN 15 1 steel, Mater. Des. 33 , 136–144 (2012) [CrossRef] [Google Scholar]
  14. A. Molinari et al., Effect of deep cryogenic treatment on the mechanical properties of tool steels, J. Mater. Process. Technol. 118 , 350–355 (2001) [CrossRef] [Google Scholar]
  15. E. Avallone, T. Baumeister, Mark's standard handbook for mechanical engineers (McGraw-Hill, New York, 2017) [Google Scholar]
  16. N.S. Kalsi, R. Sehgal, V.S. Sharma, Cryogenic treatment of tool materials: a review, Mater. Manuf. Process. 25 , 1077–1100 (2010) [CrossRef] [Google Scholar]
  17. Z.-M. Huang et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 , 2223–2253 (2003) [CrossRef] [Google Scholar]
  18. M. Pellizzari et al., Deep cryogenic treatment of AISI M2 high-speed steel, Int. J. Microstruct. Mater. Prop. 3 , 383–390 (2008) [Google Scholar]
  19. T.V. Sreerama Reddy, et al., Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts, Int. J. Refract. Metals Hard Mater. 27 , 181–185 (2009) [CrossRef] [Google Scholar]
  20. S. Kumar et al., The effects of cryogenic treatment on cutting tools, IOP Conf. Ser.: Mater. Sci. Eng. 225 , 012104 (2017) [CrossRef] [Google Scholar]
  21. N.B. Dhokey et al., Metallurgical investigation of cryogenically cracked M35 tool steel, Eng. Fail. Anal. 21 , 52–58 (2012) [CrossRef] [Google Scholar]
  22. I. Reddy et al., Characterization and performance evaluation of HSS cutting tools under deep cryogenic treatment, Int. J. Eng. Sci. 5 , 2319 (2015) [Google Scholar]
  23. J. Khedkar, A.S. Khanna, K.M. Gupt, Tribological behavior of plasma and laser coated steels, Wear 205 , 220–227 (1997) [CrossRef] [Google Scholar]
  24. R.B. Solé, Optimal design of sustainable chemical processes via a combined simulation-optimization approach [Google Scholar]
  25. S. Ebnesajjad, Handbook of adhesives and surface preparation: technology, applications and manufacturing (William Andrew, New Year, 2010) [Google Scholar]
  26. J. Antony, Taguchi or classical design of experiments: a perspective from a practitioner, Sensor Rev. 26 , 227–2303 (2006) [CrossRef] [Google Scholar]
  27. A. Aggarwal et al., Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi's technique comparative analysis, J. Mater. Process. Technol. 200 , 373–384 (2008) [CrossRef] [Google Scholar]
  28. A. Palanisamy, T. Selvaraj, S. Sivasankaran, Optimization of turning parameters of machining incoloy 800H super alloy using cryogenically treated multilayer CVD coated tool, Arab. J. Sci. Eng. 43 , 1–14 (2018) [CrossRef] [Google Scholar]
  29. C.B. Reddy, V. Diwakar Reddy, C. Eswaran Reddy, Experimental investigations on MRR and surface roughness of EN 19& SS 420 Steels in wire EDM using Taguchi method, Int. J. Eng. Sci. Technol. 4 , 4603–4614 (2012) [Google Scholar]
  30. P. Baldissera, C. Delprete, Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel, Mater. Des. 30 , 1435–1440 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.