Open Access
| Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
|
|
|---|---|---|
| Article Number | 23 | |
| Number of page(s) | 9 | |
| DOI | https://doi.org/10.1051/smdo/2025025 | |
| Published online | 07 October 2025 | |
- O. Sigmund, K. Maute, Topology optimization approaches, Struct. Multidisc. Optim. 48, 1031–1055 (2013) [Google Scholar]
- J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, W. Zhang, A review of topology optimization for additive manufacturing: status and challenges, Chin. J. Aeronaut. 34, 91–110 (2021) [Google Scholar]
- O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidisc. Optim. 21, 120–127 (2001) [CrossRef] [Google Scholar]
- T. Liu, S. Wang, B. Li, L. Gao, A level-set-based topology and shape optimization method for continuum structure under geometric constraints, Struct. Multidisc. Optim. 50, 253–273 (2014) [Google Scholar]
- X. Huang, Y.M. Xie, A new look at ESO and BESO optimization methods, Struct. Multidisc. Optim. 35, 89–92 (2008) [Google Scholar]
- X. Li, J. Zhu, P. Wei, C. Su, Topology optimization design of microstructures with zero Poisson's ratio, Int. J. Simul. Multidisci. Des. Optim. 15, 12 (2024) [Google Scholar]
- Y.A. Nogoud, O. Mohamed, M. Kamal Alden, A. Abuelnuor, Reducing the amount of fuel consumed by adjusting the location of the center of gravity, Results Eng. 20, 101482 (2023) [Google Scholar]
- M. Bakhtiarinejad, S. Lee, J. Joo, Component allocation and supporting frame topology optimization using global search algorithm and morphing mesh, Struct. Multidisc. Optim. 55, 297–315 (2017) [Google Scholar]
- Q. Cao, N. Dai, J. Bai, H. Dai, A dimensionality reduction optimization method for thin-walled parts to realize center of mass control and lightweight design, Eng. Optim. 0, 1––17 (2024) https://doi.org/10.1080/0305215X.2024.2350648 [Google Scholar]
- L. Liang, J. Zhang, L.-P. Chen, X.-H. Zhang, FVM-based multi-objective topology optimization and Matlab implementation, in: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010) (IEEE, Taiyuan, China, 2010), pp. V1-672–V1-678 [Google Scholar]
- S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79, 12–49 (1988) [NASA ADS] [CrossRef] [Google Scholar]
- J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, J. Comput. Phys. 163, 489–528 (2000) [Google Scholar]
- S. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys. 171, 272–288 (2001) [CrossRef] [MathSciNet] [Google Scholar]
- M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003) [Google Scholar]
- X. Huang, Y.M. Xie, Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput. Mech. 43, 393–401 (2009) [Google Scholar]
- P. Wei, Z. Li, X. Li, M.Y. Wang, An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions, Struct. Multidisc. Optim. 58, 831–849 (2018) [Google Scholar]
- D. Chen, P. Kumar, Y. Kametani, Y. Hasegawa, Multi-objective topology optimization of heat transfer surface using level-set method and adaptive mesh refinement in OpenFOAM, Int. J. Heat Mass Transf. 221, 125099 (2024) [Google Scholar]
- K. Hamza, M. Aly, H. Hegazi, K. Saitou, Multi-objective topology optimization of multi-component continuum structures via an explicit level-set approach, Struct. Multidisc. Optim. 51, 733–748 (2015) [Google Scholar]
- P. Meliga, W. Abdel Nour, D. Laboureur, D. Serret, E. Hachem, Multi-objective topology optimization of conjugate heat transfer using level sets and anisotropic mesh adaptation, Fluids 9, (2024) [Google Scholar]
- N.P. Van Dijk, M. Langelaar, F. Van Keulen, Explicit level‐set‐based topology optimization using an exact Heaviside function and consistent sensitivity analysis, Num. Meth. Eng. 91, 67–97 (2012) [Google Scholar]
- Y. Wang, Z. Kang, A velocity field level set method for shape and topology optimization, Num. Meth. Eng. 115, 1315–1336 (2018) [Google Scholar]
- J. Sokolowski, J.-P. Zolesio, Shape derivatives for linear problems, in: Introduction to Shape Optimization (Springer, Berlin, Heidelberg, 1992), pp. 117–162 [Google Scholar]
- P. Wei, M.Y. Wang, The augmented lagrangian method in structural shape and topology optimization with RBF based level set method, in: The Forth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems 2006, Kunming, China, 6–9 November [Google Scholar]
- S. Yamasaki, T. Nomura, A. Kawamoto, K. Sato, K. Izui, S. Nishiwaki, A level set-based topology optimization method using the augmented lagrangian method, JEE 6, 387–399 (2011) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
