Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
Innovative Multiscale Optimization and AI-Enhanced Simulation for Advanced Engineering Design and Manufacturing
Article Number 24
Number of page(s) 17
DOI https://doi.org/10.1051/smdo/2025014
Published online 24 October 2025
  1. L. Wang, Z. Wang, P. Kendall et al., Digital-twin deep dynamic camera position optimisation for the V-STARS photogrammetry system based on 3D reconstruction, Int. J. Product. Res. 62, 3932–3951 (2024) [Google Scholar]
  2. D.S. Silva, R.S. Astolfi, S.K. Jagatheesaperumal et al., Advances in 3D fusion of multimodal medical images: 3D reconstruction of bone, muscle, and ligament structures under load from radiographs and magnetic resonance imaging, Res. Biomed. Eng. 41, 1–35 (2025) [Google Scholar]
  3. J. Ka, H. Kim, J. Kim et al., Analysis of virtual reality teaching methods in engineering education: assessing educational effectiveness and understanding of 3D structures, Virtual Real. 29, 17 (2025) [Google Scholar]
  4. F. Cao, J. Shi, C. Wen, A dynamic graph aggregation framework for 3D point cloud registration, Eng. Appl. Artif. Intell. 120, 105817 (2023) [Google Scholar]
  5. V. Barrile, E. Bernardo, G. Bilotta, An experimental HBIM processing: Innovative tool for 3D model reconstruction of morpho-typological phases for the cultural heritage, Remote Sens. 14, 1288 (2022) [Google Scholar]
  6. A. Murtiyoso, E. Pellis, P. Grussenmeyer et al., Towards semantic photogrammetry: generating semantically rich point clouds from architectural close-range photogrammetry, Sensors 22, 966 (2022) [Google Scholar]
  7. M. Wei, Z. Wei, H. Zhou et al., AGConv: adaptive graph convolution on 3D point clouds, IEEE Trans. Pattern Anal. Mach. Intell. 45, 9374–9392 (2023) [Google Scholar]
  8. M. Korosteleva, S.H. Lee, Neuraltailor: reconstructing sewing pattern structures from 3d point clouds of garments, ACM Trans. Graphics (TOG) 41, 1–16 (2022) [Google Scholar]
  9. Z. Zhang, A. Ji, K. Wang et al., UnrollingNet: an attention-based deep learning approach for the segmentation of large-scale point clouds of tunnels, Automat. Construct. 142, 104456 (2022) [Google Scholar]
  10. C. Rausch, C. Haas, Automated shape and pose updating of building information model elements from 3D point clouds, Automat. Construct. 124, 103561 (2021) [Google Scholar]
  11. H. Lim, S. Hwang, H. Myung, ERASOR: Egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building, IEEE Robot. Automat. Lett. 6, 2272–2279 (2021) [Google Scholar]
  12. V. Croce, G. Caroti, L. De Luca et al., From the semantic point cloud to heritage-building information modeling: a semiautomatic approach exploiting machine learning, Remote Sens. 13, 461 (2021) [Google Scholar]
  13. V.A. Cotella, From 3D point clouds to HBIM: application of artificial intelligence in cultural heritage, Autom. Construct. 152, 104936 (2023) [Google Scholar]
  14. K. Mirzaei, M. Arashpour, E. Asadi et al., 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review, Adv. Eng. Inform. 51, 101501 (2022) [CrossRef] [Google Scholar]
  15. W. Sun, J. Wang, F. Jin et al., Intelligent construction monitoring method for large and complex steel structures based on laser point cloud, Buildings 13, 1749 (2023) [Google Scholar]
  16. R. Huang, Y. Xu, L. Hoegner et al., Semantics-aided 3D change detection on construction sites using UAV-based photogrammetric point clouds, Autom. Construct. 134, 104057 (2022) [Google Scholar]
  17. J. Kim, D. Chung, Y. Kim et al., Deep learning-based 3D reconstruction of scaffolds using a robot dog, Autom. Construct. 134, 104092 (2022) [Google Scholar]
  18. M. Casini, Extended reality for smart building operation and maintenance: a review, Energies 15, 3785 (2022) [Google Scholar]
  19. J. Moyano, J.E. Nieto-Julián, L.M. Lenin et al., Operability of point cloud data in an architectural heritage information model, Int. J. Architect. Heritage 16, 1588–1607 (2022) [Google Scholar]
  20. Y. Pan, L. Zhang, Integrating BIM and AI for smart construction management: current status and future directions, Arch. Comput. Methods Eng. 30, 1081–1110 (2023) [Google Scholar]
  21. H. Feng, W. Li, Z. Luo et al., GCN-based pavement crack detection using mobile LiDAR point clouds, IEEE Trans. Intell. Transport. Syst. 23, 11052–11061 (2021) [Google Scholar]
  22. C. Yin, B. Wang, V.J.L. Gan et al., Automated semantic segmentation of industrial point clouds using ResPointNet++, Autom. Construct. 130, 103874 (2021) [Google Scholar]
  23. R. Rashdi, J. Martínez-Sánchez, P. Arias et al., Scanning technologies to building information modelling: a review, Infrastructures 7, 49 (2022) [CrossRef] [Google Scholar]
  24. K. You, C. Zhou, L. Ding, Deep learning technology for construction machinery and robotics, Automat. Construct. 150, 104852 (2023) [Google Scholar]
  25. M. Pepe, A.R. Garofalo, D. Costantino et al., From point cloud to BIM: a new method based on efficient point cloud simplification by geometric feature analysis and building parametric objects in rhinoceros/grasshopper software, Remote Sens. 16, 1630 (2024) [Google Scholar]
  26. Y. Shen, L. Hui, H. Jiang et al., Reliable inlier evaluation for unsupervised point cloud registration, Proc. AAAI Conf. Artific. Intell. 36, 2198–2206 (2022) [Google Scholar]
  27. J. Kim, S. Lee, J. Seo et al., The integration of earthwork design review and planning using UAV-based point cloud and BIM, Appl. Sci. 11, 3435 (2021) [Google Scholar]
  28. Z. Ballouch, R. Hajji, F. Poux et al., A prior level fusion approach for the semantic segmentation of 3D point clouds using deep learning, Remote Sens. 14, 3415 (2022) [Google Scholar]
  29. Y. Xu, Y. Zhou, P. Sekula et al., Machine learning in construction: From shallow to deep learning, Dev. Built Environ. 6, 100045 (2021) [Google Scholar]
  30. C. Tao, J. Du, PointSGRADE: Sparse learning with graph representation for anomaly detection by using unstructured 3D point cloud data, IISE Trans. 57, 131–144 (2025) [Google Scholar]
  31. Y. Li, L. Zhao, Y. Chen et al., 3D LiDAR and multi-technology collaboration for preservation of built heritage in China: a review, Int. J. Appl. Earth Observ. Geoinform. 116, 103156 (2023) [Google Scholar]
  32. D. Yu, Z. He, Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities, Natural Hazards 112, 1–36 (2022) [Google Scholar]
  33. V. Croce, G. Caroti, A. Piemonte et al., H-BIM and artificial intelligence: classification of architectural heritage for semi-automatic scan-to-BIM reconstruction, Sensors 23,2497 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.