Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Article Number 20
Number of page(s) 8
DOI https://doi.org/10.1051/smdo/2024014
Published online 21 October 2024
  1. L. Zhu, J. Zhang, W. Wang, Y. Li, X. Xu, C. Zhao, W. Wang, A deep mutual learning based strategy for cloud-edge collaborative anomaly detection in cigarette packaging, in 2022 China Automation Congress (CAC). IEEE (2022). pp. 6950–6955 [Google Scholar]
  2. P. Ay, Y. Yasin, O. Elbek, M. Guner, T. Gezer, U.P. Sonmez, M. Ceyhan, F. Yildiz, E. Dagli, Will plain packaging of cigarettes achieve the expected? Perceptions among medical students, Tobacco Induced Diseases 20, 1–10 (2022) [CrossRef] [Google Scholar]
  3. D. Sun, Y. Pang, J. Lyu, L. Li, Current progress and challenges to tobacco control in China, China CDC Weekly 4, 101 (2022) [CrossRef] [Google Scholar]
  4. C.N. Tompkins, A. Burnley, A. McNeill, S.C. Hitchman, Factors that influence smokers' and ex-smokers' use of IQOS: a qualitative study of IQOS users and ex-users in the UK, Tobacco Control 30, 16–23 (2021) [CrossRef] [Google Scholar]
  5. T.T. Le, M.A. Jaffri, The association between smoking behaviors and prices and taxes per cigarette pack in the United States from 2000 through 2019, BMC Public Health 22, 856 (2022) [CrossRef] [Google Scholar]
  6. X. Wang, F. Shen, C. Chen, Q. Zhang, MBA-DNet: a mask block attention-based foreign matter detection network for tobacco packages, Rev. Sci. Instrum. 95, 35–54 (2024) [Google Scholar]
  7. F. Alonso, K. Welding, J.E. Cohen, Laws and regulations governing rotation of health warning labels on cigarette packs in the Region of the Americas, Rev. Panamer. Salud Púb. 46, e123 (2022) [Google Scholar]
  8. A.L. Pipe, W. Evans, S. Papadakis, Smoking cessation: health system challenges and opportunities, Tobacco Control 31, 340–347 (2022) [CrossRef] [Google Scholar]
  9. W. Zhou, R. Li, J. Guo, Z. Li, R. Zhou, H. Zhu, Z. Jian, Y. Lai, Machine Vision-Based Defect Classification Algorithm for Rolled Packages, International Conference on Applied Intelligence 43, 302–313 (2023) [Google Scholar]
  10. C.H.E.N. Zhibin, N.O.N.G. Yingxiong, L.I.A.N.G. Dong, S.U.N. Chen, W.E.I. Yi, Z.H.O.N.G. Zhengyan, Recognition of cigarette brand based on deep learning, Tobacco Sci. Technol. 53, 75–80 (2020) [Google Scholar]
  11. Y. Gao, Z. Xu, X. Xu, Enhanced cigarette pack counting via image enhancement techniques and advanced SAFE count methodology, Traitement du Signal 40, 2353–2365 (2023) [CrossRef] [Google Scholar]
  12. I.A. Muarofah, M.J. Vikri, I.A. Sa'ida, Real-time tomato quality detection system using you only look once (YOLOv7) algorithm, Ultimatics 15, 89–98 (2023) [Google Scholar]
  13. S.M. Abdullah, R. Huque, K. Siddiqi, M. Kanaan, S. Huque, S. Ullah, Z. Khan, Non-compliant packaging and illicit smokeless tobacco in Bangladesh, India and Pakistan: findings of a pack analysis, Tobacco Control 33, 333–340 (2024) [Google Scholar]
  14. H.M. Park, J.H. Park, YOLO network optimization with a single circular bounding box for detecting defective cigarettes, IEEE Access 11, 142951–142963 (2023) [CrossRef] [Google Scholar]
  15. B. Shi, M. Cheng, S. Zhang, L. He, Semi-supervised image restoration algorithm for degraded plastic-sealed cigarette packs, J. Comput. Appl. 43, 238 (2023) [Google Scholar]
  16. Z. Jin, F. Zhong, Q. Zhang, W. Wang, X. Wang, Visual detection of tobacco packaging film based on apparent features, Int. J. Adv. Robotic Syst. 18, 17298814211024839 (2021) [CrossRef] [Google Scholar]
  17. X. Wang, H. Li, Y. Wang, B. Fu, B. Ai, Intelligent detection and odor recognition of cigarette packaging paper boxes based on a homemade electronic nose, Micromachines 15, 458 (2024) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.