Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Article Number 5
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2024005
Published online 12 April 2024
  1. B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, T. Freiheit, Smart manufacturing and intelligent manufacturing: a comparative review, Engineering 7, 738–757 (2021) [CrossRef] [Google Scholar]
  2. Y. Fu, Y. Hou, Z. Wang, X. Wu, K. Gao, L. Wang, Distributed scheduling problems in intelligent manufacturing systems, Tsinghua Sci. Technol. 26, 625–645 (2021) [CrossRef] [Google Scholar]
  3. H. Dai, H. Wang, G. Xu, J. Wan, M. Lmran, Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies, Enterprise Inform. Syst. 14, 1279–1303 (2020) [CrossRef] [Google Scholar]
  4. C. Zhang, G. Zhou, H. Li, C. Yan, Manufacturing blockchain of things for the configuration of a data-and knowledge-driven digital twin manufacturing cell, IEEE Internet Things J. 7, 11884–11894 (2020) [CrossRef] [Google Scholar]
  5. M. Barma, U. Modibbo, Multiobjective mathematical optimization model for municipal solid waste management with economic analysis of reuse/recycling recovered waste materials, J. Comput. Cogn. Eng. 1, 122–137 (2022) [Google Scholar]
  6. L. Li, J. Zhang, Research and analysis of an enterprise E-commerce marketing system under the big data environment, J. Organizational End User Comput. 33, 1–19 (2021) [Google Scholar]
  7. R. Li, J. Rao, L. Wan, The digital economy, enterprise digital transformation, and enterprise innovation, Manag. Decis. Econ. 43, 2875–2886 (2022) [CrossRef] [Google Scholar]
  8. G. Du, Y. Lin, Brand connection and entry in the shopping mall ecological chain: evidence from consumer behavior big data analysis based on two-sided markets, J. Cleaner Product. 364, 1–12 (2022) [Google Scholar]
  9. O. Kulkarni, S. Jena, V. Sankar, MapReduce framework based big data clustering using fractional integrated sparse fuzzy C means algorithm, IET Image Process. 14, 2719–2727 (2020) [CrossRef] [Google Scholar]
  10. Z. Chen, Y. Meng, R. Wang, T. Chen, Water quality big data analysis of the river basin with artificial intelligence ADV monitoring, Membrane Water Treat. 13, 219–225 (2022) [Google Scholar]
  11. H. Thai, J. Huh, Optimizing patient transportation by applying cloud computing and big data analysis, J. Supercomput. 78, 18061–18090 (2022) [CrossRef] [Google Scholar]
  12. S. Sasikala, S. Gomathi, V. Geetha, L. Murali, A proposed framework for cloud-aware multimodal multimedia big data analysis toward optimal resource allocation, Comput. J. 64, 880–894 (2021) [CrossRef] [Google Scholar]
  13. M. Agersted, K. Babak, Y. Liu, W. Melle, T. Klevjer, Application of an unsupervised clustering algorithm on in situ broadband acoustic data to identify different mesopelagic target types, ICES J. Mar. Sci. 78, 2907–2921 (2021) [CrossRef] [Google Scholar]
  14. E. Zhang, H. Li, Y. Huang, S. Hong, L. Zhao, C. Ji, Practical multi-party private collaborative k-means clustering, Neurocomputing 467, 256–265 (2022) [CrossRef] [Google Scholar]
  15. D. Luo, H. Liu, E. Qi, Recognition and labeling of faults in wind turbines with a density-based clustering algorithm, Data Technol. Appl. 55, 841–868 (2021) [Google Scholar]
  16. A. Cupak, G. Kaczor, Regionalization of low flow for chosen catchments of the upper Vistula river basin using non-hierarchical cluster analysis, Idojaras 126, 27–45 (2022) [Google Scholar]
  17. X. Tang, X. Ji, J. Liu, Predicting aircraft taxiing estimated time of arrival by cluster analysis, IET Intell. Trans. Syst. 16, 252–262 (2022) [CrossRef] [Google Scholar]
  18. A. Brintrup, J. Pak, D. Ratiney, T. Pearce, P. Wichmann, P. Woodall, Supply chain data analytics for predicting supplier disruptions: a case study in complex asset manufacturing, Int. J. Product. Res. 58, 3330–3341 (2020) [CrossRef] [Google Scholar]
  19. H. Henderi, T. Wahyuningsih, E. Rahwanto, Comparison of Min-Max normalization and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer, Int. J. Inform. Inform. Syst. 4, 13–20 (2021) [CrossRef] [Google Scholar]
  20. P. Anitha, M. Patil, RFM model for customer purchase behavior using K-means algorithm, J. King Saud Univ. Comput. Inf. Sci. 34, 1785–1792 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.