Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Article Number 8
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2023024
Published online 12 April 2024
  1. E. Antar, M. Elkhoury, Parametric sizing optimization process of a casing for a Savonius vertical axis wind turbine, Renew. Energy 136, 127–138 (2019) [CrossRef] [Google Scholar]
  2. B. Arfaoui, M.T. Bouzaher, B. Guerira, C. Bensaci, On the performance of swing arm flapping turbines, ASME J. Sol. Energy Eng. 143, 011013 (2020) [Google Scholar]
  3. A. Zereg, N. Lebaal, M. Aksas, Derradji, CFD analysis of a vertical axis wind turbine, in: Mathematical Modelling of Fluid Dynamics and Nanofluids,CRC Press, 2024, pp. 184–196 [Google Scholar]
  4. F. Wenehenubun, A. Saputra, H. Sutanto, An experimental study on the performance of Savonius wind turbines related with the number of blades, Energy Procedia 68, 297–314 (2015) [CrossRef] [Google Scholar]
  5. F. Guo, B. turbine caused by rear deflector, Energy 196, 117132 (2020) [Google Scholar]
  6. G. Kailash, T.I. Eldho, S.V. Prabhu, Performance study of modified Savonius water turbine with two deflector plates, Int. J. Rotating Mach. 201, 516–523 (2012) [Google Scholar]
  7. Y. Triyogi, S. Gunawan, N.A. Fatowil, C.W. Adi, Improving the performance of Savonius wind turbine by installation of a circular cylinder upstream of returning turbine blade, Alex. Eng. J. 59, 4923–4932 (2020) [CrossRef] [Google Scholar]
  8. H. Alizadeh, M.H. Jahangir, R. Ghasempour, CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows, Ocean Eng. 202, 107178 (2020) [CrossRef] [Google Scholar]
  9. M.H. Mohamed, F. Alqurashi, A. Ramadan, D. Thévenin, Enhancement attempts for a three-bladed Savonius turbine performance, Front. Energy Res. 10, 797–868 (2022) [Google Scholar]
  10. T.B. Mohamed, G. Belhi, Computational investigation on the influence of expandable blades on the performance of a Savonius wind turbine, J. Sol. Energy Eng. 144, 061003–1 (2022) [CrossRef] [Google Scholar]
  11. M.T. Bouzaher, B. Guerira, Impact of flexible blades on the performance of Savonius wind turbine, Arab. J. Sci. Eng. 47, 15365–15377 (2022) [CrossRef] [Google Scholar]
  12. T.B. Mohamed, Effect of flexible blades on the Savonius wind turbine performance, J. Braz. Soc. Mech. Sci. Eng. 44, 60 (2022) [CrossRef] [Google Scholar]
  13. M.V. Driagoi, D.B. Vrinceanu, V.M. Stamate, N.F. Cofaru, Vertical wind turbine with self-limitation system of speed, IOP Conf. Series Mater. Sci. Eng. 399, 012015 (2018) [CrossRef] [Google Scholar]
  14. R. Hassanzadeh, O. bin Yaakob, M.M. Taheri, M. Hosseinzadeh, Y.M. Ahmed, An innovative configuration for new marine current turbine, Energy. 120, 413–422 (2018) [Google Scholar]
  15. S. Krzysztof, O. Damian, R. Piotr, M. Emil, Numerical investigations of the Savonius, Turbine. Deform. Blades Energ. 13, 3717 (2020) [Google Scholar]
  16. Bo. Yang, C. Lawn, Fluid dynamic performance of a vertical axis turbine for tidal currents renew, Energy 36, 3355–3366 (2011) [CrossRef] [Google Scholar]
  17. D.D.D.P. Tjahjana, Z. Arifin, S. Suyitno, W.E. Juwana, A.R. Prabowo, C. Harsito, Experimental study of the effect of slotted blades on the Savonius wind turbine performance, Theor. Appl. Mech. Lett. 11, 100249 (2021) [CrossRef] [Google Scholar]
  18. E. Fatahian, F. Ismail, M.H.H. Ishak, W.S. Chang, Aerodynamic performance improvement of Savonius wind turbine through a passive flow control method using grooved surfaces on a deflector, Ocean Eng. 284, 115282 (2023) [CrossRef] [Google Scholar]
  19. A.F. Kaya, A. Acir, E. Kaya, Numerical investigation of wind-lens combinations for improving aerodynamic performance of an elliptical-bladed Savonius wind turbine, J. Braz. Soc. Mech. Sci. Eng. 45, 309 (2023) [CrossRef] [Google Scholar]
  20. J. Priyadumkol, K. Khaothong, W. Chaiworapuek, Experimental investigation of modified Savonius wind turbines, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, Vol. 501, No. 1, p. 012054 [Google Scholar]
  21. A.L. Manganhar, A.H. Rajpar, M.R. Luhur, S.R. Samo, M. Manganhar, Performance analysis of a Savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house, Renew. Energy 136, 512–520 (2019) [CrossRef] [Google Scholar]
  22. H. Mohamed, A. Faris, T. Dominique, Performance enhancement of a Savonius turbine under effect of front alguiding plates, Energy Rep. 7, 6069–6076 (2021) [CrossRef] [Google Scholar]
  23. E. Kerikous, D. Thévenin, Optimal shape of thick blades for ahydraulic savonius turbine, Renew. Energy 134, 629–638 (2019) [CrossRef] [Google Scholar]
  24. G. Ferrari, D. Federici, P. Schito, F. Inzoli, R. Mereu, CFD study of Savonius wind turbine: 3D model validation and parametric analysis, Renew. Energy 105, 722–734 (2017) [CrossRef] [Google Scholar]
  25. K. Kacprzak, K. Sobczak, Computational assessment of the influence of the overlap ratio on the power characteristics of a classical Savonius wind turbine, Open Eng. 5, 314–322 (2015) [CrossRef] [Google Scholar]
  26. T. Wenlong, S. Baowei, H. James, Z. Van, Parakram P computational fluid dynamics prediction of a modified Savonius wind turbine with novel blade shapes energies 8, 7915–7929 (2015) [Google Scholar]
  27. R.E. Sheldahl, B.F. Blackwell, L.V. Feltz, Wind tunnel performance data for two- and three-bucket Savonius rotors, J. Energy 2, 160–164 (1978) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.