Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 14, 2023
Article Number 1
Number of page(s) 16
Published online 24 April 2023
  1. Z. Xu, N. Tang, C. Xu, X. Cheng, Data science: connotation, methods, technologies, and development, Data Sci. Manag. 1, 32–37 (2021) [CrossRef] [Google Scholar]
  2. Z. Yan, Z. Jin, S. Teng, G. Chen, D. Bassir, Measurement of Bridge Vibration by UAVs Combined with CNN and KLT Optical-Flow Method. Appl. Sci. 12, 1581 (2022) [Google Scholar]
  3. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5, 115–133 (1943) [CrossRef] [Google Scholar]
  4. H.D. Block, A review of perceptrons: An introduction to computational geometry, Inf. Control 17, 501–522 (1970) [CrossRef] [Google Scholar]
  5. D.E. Rumelhart, J.L. McClelland, Learning Internal Representations by Error Propagation (1987), pp. 318–362 [Google Scholar]
  6. G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science (New York, N.Y.) 313, 504–507 (2006) [CrossRef] [Google Scholar]
  7. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou et al., Mastering the game of Go without human knowledge, Nature 550, 354–359 (2017) [CrossRef] [Google Scholar]
  8. H. Gao, S. Tomić, J. Nikolić, Z. Perić, D. Aleksić, Performance of post-training two-bits uniform and layer-wise uniform quantization for MNIST dataset from the perspective of support region choice, Math. Probl. Eng. 2022, 1463094 (2022) [Google Scholar]
  9. A. Van Biesbroeck, F. Shang, D. Bassir, CAD model segmentation via deep learning, Int. J. Comput. Methods 18 (2020), 10.1142/S0219876220410054 [Google Scholar]
  10. V. Shelar, S. Subramani, D. Jebaseelan, R-tree data structure implementation for Computer Aided Engineering (CAE) tools, Int. J. Simulat. Multidiscipl. Des. Optim. 12, 6 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Ignatov, G. Malivenko, R. Timofte, S. Chen, X. Xia, Z. Liu, Y. Zhang, F. Zhu, J. Li, X. Xiao, Y. Tian, X. Wu, C. Kyrkou, Y. Chen, Z. Zhang, Y. Peng, Y. Lin, S. Dutta, S. Das, S. Siddiqui, Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report (2021), pp. 2558–2568 [Google Scholar]
  12. Y. Hu, Y. Liu, Z. Liu, A survey on convolutional neural network accelerators: GPU, FPGA and ASIC, 2022 14th International Conference on Computer Research and Development (ICCRD) (2022), pp. 100–107 [CrossRef] [Google Scholar]
  13. M.J. Zhang, S. Garcia, M. Terre, Fast Learning Architecture for Neural Networks, in 2022 30th European Signal Processing Conference (EUSIPCO) (2022), pp. 1611–1615 [CrossRef] [Google Scholar]
  14. L. Ravaglia, M. Rusci, A. Capotondi, F. Conti, L. Pellegrini, V. Lomonaco, D. Maltoni, L. Benini, Memory-latency-accuracy trade-offs for continual learning on a RISC-V extreme-edge node, 2020 IEEE Workshop on Signal Processing Systems (SiPS) (2020), pp. 1–6 [Google Scholar]
  15. Y. Li, S.E. Li, X. Jia, S. Zeng, Y. Wang, FPGA accelerated model predictive control for autonomous driving, J. Intell. Connect. Veh. 5, 63–71 (2022) [Google Scholar]
  16. K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, DL A survey of FPGA-based neural network inference accelerators, ACM Trans. Reconfig. Technol. Syst. 12, 1–26 (2019) [Google Scholar]
  17. S. Xiong, G. Wu, X. Fan, X. Feng, Z. Huang, W. Cao, X. Zhou, S. Ding, J. Yu, L. Wang, Z. Shi, MRI-based brain tumor segmentation using FPGA-accelerated neural network, BMC Bioinfor. 22, 421 (2021) [CrossRef] [Google Scholar]
  18. C.-C. Sun, A. Ahamad, P.-H. Liu, SoC FPGA accelerated sub-optimized binary fully convolutional neural network for robotic floor region segmentation, Sensors 20, 6133 (2020) [CrossRef] [Google Scholar]
  19. L. Wang, Y. Zhao, X. Li, An automatic conversion tool for caffe neural network configuration oriented to openCL-based FPGA platforms, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (2019), pp. 195–198 [Google Scholar]
  20. M. Carreras, G. Deriu, L. Raffo, L. Benini, P. Meloni, Optimizing temporal convolutional network inference on FPGA-based accelerators, IEEE J. Emerg. Selected Top. Circ. Syst. 1–1 (2020), 10.1109/JETCAS.2020.3014503 [Google Scholar]
  21. H. Park, C. Lee, H. Lee, Y. Yoo, Y. Park, I. Kim, K. Yi, Work-in-progress: optimizing DCNN FPGA accelerator design for handwritten hangul character recognition, in 2017 International Conference on Compilers, Architectures and Synthesis For Embedded Systems (CASES) (2017), pp. 1–2 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.