Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Advances in Modeling and Optimization of Manufacturing Processes
Article Number 18
Number of page(s) 8
Published online 19 July 2022
  1. P. Morgan, M. Hansen, J.Y. Tsao, LED lighting efficacy: status and directions, Comptes Rendus Phys. 1, 1–12 (2017) [Google Scholar]
  2. K. Ben Abdelmlek, Z. Araoud, L. Canale, K. Charrada, G. Zissis, Optimal substrate design for thermal management of high power multi-chip LEDs module, Optik (Stuttg). 242, 167179 (2021) [CrossRef] [Google Scholar]
  3. H.H. Cheng, D.S. Huang, M.T. Lin, Heat dissipation design and analysis of high power LED array using the finite element method, Microelectron. Reliab. 52, 905–911 (2012) [CrossRef] [Google Scholar]
  4. F. He, Q. Chen, J. Liu, J. Liu, Thermal analysis of COB array soldered on heat sink, Int. Commun. Heat Mass Transf. 59, 55–60 (2014) [CrossRef] [Google Scholar]
  5. X. Lin, S. Mo, L. Jia, Z. Yang, Y. Chen, Z. Cheng, Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink, Appl. Energy 242, 232–238 (2019) [CrossRef] [Google Scholar]
  6. X. Deng, Z. Luo, Z. Xia, W. Gong, L. Wang, Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator, Energy Convers. Manag. 132, 207–212 (2017) [CrossRef] [Google Scholar]
  7. S. Sundar, G. Song, M.Z. Zahir, J.S. Jayakumar, S.-J. Yook, Performance investigation of radial heat sink with circular base and perforated staggered fin, Int. J. Heat Mass Transf. 151, 1–9 (2019) [Google Scholar]
  8. D.S. Huang, T.C. Chen, L. Te Tsai, M.T. Lin, Design of fins with a grooved heat pipe for dissipation of heat from high-powered automotive LED headlights, Energy Convers. Manag. 180, 550–558 (2019) [CrossRef] [Google Scholar]
  9. M. Wang, H. Tao, Z. Sun, C. Zhang, The development and performance of the high-power LED radiator, Int. J. Therm. Sci. 113, 65–72 (2017) [CrossRef] [Google Scholar]
  10. Y. Huaiyu, S. Koh, H. Van Zeijl, A.W.J. Gielen, A review of passive thermal management of LED module, J. Semicond. 32, 0140008–1: 014008–4 (2011) [Google Scholar]
  11. S. Ragavanantham, S. Sampathkumar, S.S. Kumar, A study of temperature distribution and its effect on grinding wheel surface during wheel loading, ASME 2016 Int. Mech. Eng. Congr. Expo. 2, 2–6 (2017) [Google Scholar]
  12. D. Vinothraj, S. Ragavanantham, M. Saravanakumar, M. Vivekananthan, G.S. Sivagnanamani, Heat dissipation and inter-relationship between physical properties of moulding sand, Mater. Today Proc. 37, 1809–1812 (2020) [Google Scholar]
  13. B. Li, C. Byon, Orientation effects on thermal performance of radial heat sinks with a concentric ring subject to natural convection, Int. J. Heat Mass Transf. 90, 102–108 (2015) [CrossRef] [Google Scholar]
  14. S. Feng, M. Shi, H. Yan, S. Sun, F. Li, J. Lu, Natural convection in a cross-fin heat sink, Appl. Therm. Eng. 132, 30–37 (2017) [Google Scholar]
  15. M.W. Jeong, S.W. Jeon, Y. Kim, Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module, Appl. Therm. Eng. 91, 105–115 (2015) [CrossRef] [Google Scholar]
  16. T. Ramesh, A.S. Praveen, P.B. Pillai, Phase change material aided thermal scheming of high power LED: effect of PCM with varying pitch of hexagonal fins, Mater. Res. Innov. 25, 1–10 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.