Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Computation Challenges for engineering problems
Article Number 2
Number of page(s) 7
Published online 12 May 2021
  1. A.K. Parida, K. Maity, Hot machining of Ti–6Al–4V: FE analysis and experimental validation, Sadhana–Acad. P. Eng. Sci. 44, 1–6 (2019) [Google Scholar]
  2. C.M. Rao, S.S. Rao, M.A. Herbert, An experimental and numerical approach to study the performance of modified perforated cutting tools on machining of Ti–6Al–4V alloy, Arab. J. Sci. Eng. 45, 1191–1206 (2020) [Google Scholar]
  3. F. Shao, Z. Liu, Y. Wan, Z. Shi, Finite element simulation of machining of Ti-6Al-4V alloy with thermodynamical constitutive equation, Int. J. Adv. Manuf. Technol. 49, 431–439 (2010) [Google Scholar]
  4. X. Song, A. Li, M. Lv, H. Lv, J. Zhao, Finite element simulation study on pre-stress multi-step cutting of Ti-6Al-4V titanium alloy, Int. J. Adv. Manuf. Technol. 104, 2761–2771 (2019) [Google Scholar]
  5. K. Sushinder, P.R. Shivaram, S.B. Nivedh Kannaa, G. Nisarg, K.S. Vijay Sekar, Investigation of thrust forces, torque and chip microstructure during drilling of Ti-6Al-4V titanium alloy, Appl. Mech. Mater. 787, 431–436 (2015) [Google Scholar]
  6. V. Bajpai, I. Lee, H.W. Park, Finite element modeling of three-dimensional milling process of Ti-6Al-4V, Mater. Manuf. Proc. 29, 564–571 (2014) [Google Scholar]
  7. G. Chen, L. Lianpeng, K. Zhihong, Q. Xuda, R. Chengzu, Influence of constitutive models on finite element simulation of chip formation in orthogonal cutting of Ti-6Al-4V alloy, Procedia Manuf. 33, 530–537 (2019) [Google Scholar]
  8. S. Pradhan, S. Singh, C. Prakash, G. Krolczyk, A. Pramanik, C.I. Pruncu, Investigation of machining characteristics of hard-to-machine Ti-6Al-4V-ELI alloy for biomedical applications, J. Mater. Res. Technol. 8, 4849–4862 (2019) [Google Scholar]
  9. D. Arulkirubakaran, V. Senthilkumar, V. Kumawat, Effect of micro-textured tools on machining of Ti-6Al-4V alloy: an experimental and numerical approach, Int. J. Refract. Metals Hard Mater. 54, 165–177 (2016) [Google Scholar]
  10. A.K. Parida, P.V. Rao, S. Ghosh, Performance of textured tool in turning of Ti–6Al–4V alloy: numerical analysis and experimental validation, J. Braz. Soc. Mech. Sci. Eng. 42, 255 (2020) [Google Scholar]
  11. P. Sahoo, T. Pratap, K. Patra, A hybrid modelling approach towards prediction of cutting forces in micro end milling of Ti-6Al-4V titanium alloy, Int. J. Mech. Sci. 150, 495–509 (2019) [Google Scholar]
  12. B. Shi, A. Elsayed, A. Damir, H. Attia, R. M'Saoubi, A hybrid modeling approach for characterization and simulation of cryogenic machining of Ti–6Al–4V alloy, ASME J. Manuf. Sci. Eng. 141, 021021 (2019) [Google Scholar]
  13. G.R. Johnson, W.H. Cook, Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the Seventh International Symposium on Ballistics, 1983, The Hague, pp. 541–547 [Google Scholar]
  14. W.S. Lee, C.F. Lin, High-temperature deformation behaviour of Ti6A14V alloy evaluated by high strain-rate compression tests, J. Materi. Process. Technol. 75, 127–136 (1998) [Google Scholar]
  15. K.S.V. Sekar, M.P. Kumar, Finite element simulations of Ti6Al4V titanium alloy machining to assess material model parameters of the Johnson-Cook constitutive equation, J. Braz. Soc. Mech. Sci. Eng. 33, 203–211 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.