Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 1
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2019020
Published online 15 January 2020
  1. B. Rout, P.P. Tripathy, R.R. Dash, D. Dhupal, Optimization of posture prediction using MOO in brick stacking operation, in Computational Intelligence in Data Mining (Springer Science and Business Media LLC, Cham, 2020) [Google Scholar]
  2. B. Rout et al., Optimal posture prediction in brick stacking operation for reducing ergonomic risk factor, Int. J. Recent Technol. Eng. 8, 1835–1841 (2019) [Google Scholar]
  3. V. Lippi, Prediction in the context of a human-inspired posture control model, Robot. Auton. Syst. 107, 107–63 (2018) [CrossRef] [Google Scholar]
  4. S.D. Farahani et al., Human arm posture prediction in response to isometric endpoint forces, J. Biomech. 48, 48–4178 (2015) [Google Scholar]
  5. J.H. Kim et al., Lifting posture analysis in material handling using virtual human, in Proceedings of International Mechanical Engineering Congress and Exposition IMECE2005, November 5–11, 2005, Orlando, Florida USA [Google Scholar]
  6. B. Rout et al., Optimization of posture analysis in manual assembly, Int. J. Mech. Prod. Eng. Res. Dev. 8, 751–764 (2018) [Google Scholar]
  7. A.M. Karim, Y. Jingzhou, M. Timothy, B. Steven, M. Anith, Z. Xianlian, P. Amos, A. Jasbir. Towards a new generation of virtual humans, Int. J. Human Factors Model. Simul. 1, 1–2 (2006) [Google Scholar]
  8. J. Yang, T. Sinokrot, M.K. Abdel, A general analytic approach for santosa upper extremity workspace, Comput. Ind. Eng. 54, 54–242 (2008) [Google Scholar]
  9. B. Rout et al., Effective work procedure design using discomfort and effort factor in brick stacking operation – a case study, IOP Conf. Ser. Mater. Sci. Eng. 310 , 012020 (2018) [CrossRef] [Google Scholar]
  10. A.K. John, K. Krishnakumar, Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm, Int. J. Simul. Multisci. Des. Optim. 8 , A3 (2017) [CrossRef] [Google Scholar]
  11. M. Chandramouli, G.R. Bertoline, A genetic algorithm based optimization framework to visualize, evaluate, and modify 3D space configurations in Desktop VR, Int. J. Simul. Multisci. Des. Optim. 5 , A01 (2014) [CrossRef] [Google Scholar]
  12. S. Pheasant, C.M. Haslegrave, Bodyspace: Anthropometry, Ergonomics, and the Design of Work (Taylor and Francis, Boca Raton, FL, 2006) [Google Scholar]
  13. K. Hase, N. Yamazaki, Development of three-dimensional whole-body musculoskeletal model for various motion analyses, JSME Int. J. Ser. C 40, 40–25 (1997) [Google Scholar]
  14. D.B. Chaffin, Improving digital human modelling for proactive ergonomics in design, Ergonomics 48, 48–478 (2005) [CrossRef] [Google Scholar]
  15. A. Gholipour, N. Arjmand, Artificial neural networks to predict 3D spinal posture in reaching and lifting activities: applications in biomechanical models, J. Biomech. 49, 49–2946 (2016) [CrossRef] [Google Scholar]
  16. R.T. Marler, J.S. Arora, J. Yang, H.-J. Kim, K. Abdel-Malek, Use of multi-objective optimization for digital human posture prediction, Eng. Optim. 41, 41–925 (2009) [CrossRef] [Google Scholar]
  17. L. Ma, W. Zhang, D. Chablat, F. Bennis, F. Guillaume, Multiobjective optimisation method for posture prediction and analysis with consideration of fatigue effect and its application case, Comput. Ind. Eng. 57 , 1235–1246 (2009) [CrossRef] [Google Scholar]
  18. R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim. 26, 26–369 (2004) [CrossRef] [Google Scholar]
  19. Y. Xiang et al., Human lifting simulation using a multi-objective optimization approach, Multibody Syst. Dyn. 23, 23–431 (2010) [CrossRef] [Google Scholar]
  20. Z. Mi, J. (James) Yang, K. Abdel-Malek, Optimization-based posture prediction for human upper body, Robotica 27, 27–607 (2009) [Google Scholar]
  21. E.N. Horn, Optimization-based dynamic human motion prediction, Master Thesis, University of Iowa, 2005 [Google Scholar]
  22. F.C. Anderson, M.G. Pandy, Static and dynamic optimization solutions for gait are practically equivalent, J. Biomech. 34, 34–153 (2001) [CrossRef] [PubMed] [Google Scholar]
  23. L. Ma, W. Zhang, D. Chablat, F. Bennis, F. Guillaume, Multi objective optimisation method for posture prediction and analysis with consideration of fatigue effect and its application case, Comput. Ind. Eng. 57, 57–1235(2009) [Google Scholar]
  24. J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, ASME J. Appl. Mech. 23, 23–215 (1955) [Google Scholar]
  25. R.T. Marler, S. Rahmatalla, M. Shanahan, K. Abdel-Malek, A new discomfort function for optimization-based posture prediction, in Proceedings of the SAE Human Modeling for Design and Engineering Conference, 2005, p. 2680 [Google Scholar]
  26. Q.L. Zou, Q.H. Zhang, J.Z. Yang, J. Gragg, An inverse optimization approach for determining weights of joint displacement objective function for upper body kinematic posture prediction, Robotica 30, 30–389 (2012) [Google Scholar]
  27. B.R. Umberger, K.G. Gerritsen, P.E. Martin, A model of human muscle energy expenditure, Comput. Methods Biomech. Biomed. Eng. 6, 6–99 (2003) [CrossRef] [Google Scholar]
  28. J.H. Kim, K. Abdel-Malek, J. Yang, T. Marler, K. Nebel, Lifting posture analysis in material handling using virtual humans, Proc. ASME Int. Conf. Manuf. Sci. Eng. 16, 16–1445 (2005) [Google Scholar]
  29. K. Hase, N. Yamazaki, Development of three-dimensional whole-body musculoskeletal model for various motion analyses, JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 40, 40–25 (1997) [Google Scholar]
  30. L. Ma, W. Zhang, D. Chablat, F. Bennis, F. Guillaume, Multiobjective optimisation method for posture prediction and analysis with consideration of fatigue effect and its application case, Comput. Ind. Eng. 57, 57–1235 (2009) [Google Scholar]
  31. S. Hignett, L. McAtamney, Rapid Entire Body Assessment (REBA), Appl. Ergon. 31, 31–201 (2000) [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.