Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A7
Number of page(s) 7
Published online 08 April 2019
  1. D.C. Lagoudas (Ed.), Shape memory alloys: Modeling and engineering applications (Springer-Verlag, 2008) [Google Scholar]
  2. T. Merzouki, A. Duval, T.B. Zineb, Finite element analysis of a shape memory alloy actuator for a micropump, Simul. Model. Pract. Theory 27, 112 (2012) [CrossRef] [Google Scholar]
  3. P. Bisegna, F. Caselli, S. Marfia, E. Sacco, A new SMA shell element based on the corotational formulation, Comput. Mech. 54(5), 1315 (2014) [CrossRef] [Google Scholar]
  4. A. Alipour, M. Kadkhodaei, A. Ghaei, Finite element simulation of shape memory alloy wires using a user material subroutine: Parametric study on heating rate, conductivity, and heat convection, J. Intell. Mater. Syst. Struct. 26(5), 554 (2015) [CrossRef] [Google Scholar]
  5. A. Guerine, A. El Hami, L. Walha, T. Fakhfakh, M. Haddar, Dynamic response of a spur gear system with uncertain parameters, J. Theor. Appl. Mech. 54(3), 1039 (2016) [CrossRef] [Google Scholar]
  6. K. Dammak, A. El Hami, S. Koubaa, L. Walha, M. Haddar, Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos, Int. J. Mech. Sci. 134, 75 (2017) [CrossRef] [Google Scholar]
  7. K. Dammak, S. Koubaa, A. El Hami, L. Walha, M. Haddar, Numerical modelling of vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin, Appl. Acoust. 144, 113 (2019) [CrossRef] [Google Scholar]
  8. M. Beyaoui, M. Tounsi, K. Abboudi, N. Feki, L. Walha, M. Haddar, Dynamic behaviour of a wind turbine gear system with uncertainties, Comptes Rendus Méc. 344(6), 375 (2016) [Google Scholar]
  9. K. Sepahvand, M. Scheffler, S. Marburg, Uncertainty quantification in natural frequencies and radiated acoustic power of composite plates: Analytical and experimental investigation, Appl. Acoust. 87, 23 (2015) [CrossRef] [Google Scholar]
  10. N. Wiener, The homogeneous chaos, Am. J. Math. 60(4), 897 (1938) [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Nechak, S. Berger, E. Aubry, Robust analysis of uncertain dynamic systems: Combination of the centre manifold and polynomial chaos theories, WSEAS Trans. Syst. 9(4), 386 (2010) [Google Scholar]
  12. S.S. Isukapalli, A. Roy, P.G. Georgopoulos, Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems, Risk Anal. 18(3), 351 (1998) [CrossRef] [Google Scholar]
  13. M.M.R. Williams, Polynomial chaos functions and stochastic differential equations, Ann. Nucl. Energy 33(9), 774 (2006) [CrossRef] [Google Scholar]
  14. G. Saad, R. Ghanem, S. Masri, Robust system identification of strongly non-linear dynamics using a polynomial chaos-based sequential data assimilation technique, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007, p. 2211 [Google Scholar]
  15. N. Motte, A study to evaluate non-uniform phase maps in shape memory alloys using finite element method, Doctoral dissertation, Virginia Commonwealth University, 2015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.