Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A14
Number of page(s) 16
DOI https://doi.org/10.1051/smdo/2019014
Published online 23 September 2019
  1. D.O. Brush, B.O. Almorth, Buckling of bars, plates and shells (McGraw-Hill, New York, 1975) [Google Scholar]
  2. S. Majumdar, Buckling of a thin annular plate under uniform compression, AIAA J. 9 , 1701–1707 (1971) [CrossRef] [Google Scholar]
  3. J.N. Reddy, A.A. Khdeir, Buckling and vibration of laminated composite plate using various plate theories, AIAA J. 27 , 1808–1817 (1989) [CrossRef] [Google Scholar]
  4. M.M. Najafizadeh, M.R. Eslami, Buckling analysis of circular plates of functionally graded materials under uniform radial compression, Int. J. Mech. Sci. 44 , 2479–2493 (2002) [CrossRef] [Google Scholar]
  5. J.H. Kang, A.W. Leissa, Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges, Int. J. Solids Struct. 42 , 4220–4238 (2005) [CrossRef] [Google Scholar]
  6. M.H. Naei, A. Masoumi, A. Shamekhi, Buckling analysis of circular functionally graded material plate having variable thickness under uniform compression by finite-element method, Proc. Inst. Mech. Eng. C 221 , 1241–1247 (2007) [CrossRef] [Google Scholar]
  7. P. Qiao, L.Y. Shan, Explicit local buckling analysis of rotationally restrained composite plates under biaxial loading, Int. J. Struct. Stab. Dyn. 7 , 487–517 (2007) [CrossRef] [Google Scholar]
  8. M.M. Najafizadeh, H.R. Heydari, An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression, Int. J. Mech. Sci. 50 , 603–612 (2008) [CrossRef] [Google Scholar]
  9. H. Akhavan, Sh. Hosseini Hashemi, H. Rokni, A. Alibeigloo, Sh. Vahabi, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis, Comp. Mater. Sci. 44 , 951–961 (2009) [CrossRef] [Google Scholar]
  10. H. Koohkan, A. Kimiaeifar, A. Mansourabadi, R. Vaghefi, An analytical approach on the buckling analysis of circular, solid and annular functionally graded thin plates, J. Mech. Eng. 41 , 7–14 (2010) [CrossRef] [Google Scholar]
  11. F. Farhatnia, A. Golshah, Investigation on buckling of orthotropic circular and annular plates of continuously variable thickness by optimized Ritz method, Int. J. Simul. Multidisci. Des. Optim. 4 , 127–133 (2010) [CrossRef] [Google Scholar]
  12. A.A. Jafari, S.A. Eftekhari, An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates, Appl. Math. Comput. 218 , 2670–2692 (2011) [Google Scholar]
  13. M. Bodaghi, A.R. Saidi, Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation, Arch. Appl. Mech. 81 , 765–780 (2011) [CrossRef] [Google Scholar]
  14. Y. Kiani, M.R. Eslami, An exact solution for thermal buckling of annular FGM plates on an elastic medium, Composites Part B: Eng. 45 , 101–110 (2013) [CrossRef] [Google Scholar]
  15. M. Latifi, F. Farhatnia, M. Kadkhodaei, Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion, Eur. J. Mech. A: Solids 41 , 16–27 (2013) [CrossRef] [Google Scholar]
  16. H. Yaghoobi, A. Fereidooni, Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory, Composites Part B: Eng. 62 , 11–26 (2014) [CrossRef] [Google Scholar]
  17. A. Mojahedin, M. Jabbari, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled Struct. 99 , 83–90 (2016) [CrossRef] [Google Scholar]
  18. F. Farhatnia, M. Ghanbari-Mobarakeh, S. Rasouli-Jazi, S. Oveissi, Thermal buckling analysis of functionally graded circular plates resting on pasternak elastic foundation via differential transform method, Facta Univ. Ser. Mech. Eng. 15 , 545–563 (2017) [CrossRef] [Google Scholar]
  19. F. Poodeh, F. Farhatnia, M. Raeesi, Buckling analysis of orthotropic thin rectangular plates subjected to nonlinear in-plane distributed loads using generalized differential quadrature method, Int. J. Comput. Methods Eng. Sci. Mech. 19 , 102–116 (2018) [CrossRef] [Google Scholar]
  20. A.A. Daikh, A. Megueni, Thermal buckling analysis of functionally graded sandwich plates, J. Thermal Stress. 41 , 139–159 (2018) [CrossRef] [Google Scholar]
  21. M. Osaka, N. Taysi, F. Kolcu, Buckling analysis and shape optimization of elastic variable thickness circular and annular plates-I: finite element formulation, Eng. Struct. 25 , 181–192 (2003) [CrossRef] [Google Scholar]
  22. Y. Ootao, R. Kawamura, Y. Tanigawa, T. Nakamura, Neural network optimization of material composition of a functionally graded material plate at arbitrary temperature range and temperature rise, Arch. Appl. Mech. 68 , 662–676 (1998) [CrossRef] [Google Scholar]
  23. Y. Ootao, Y. Tanigawa, T. Nakamura, Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach“, Composites Part B: Eng. 30 , 415–422 (1999) [CrossRef] [Google Scholar]
  24. A.J. Goupee, S.S. Vel, Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm, Comput. Methods Appl. Mech. Eng. 195 , 5926–5948 (2006) [CrossRef] [Google Scholar]
  25. H. Mozafari, A. Ayob, F. Kamali, Optimization of functional graded plates for buckling load by using imperialist competitive algorithm, Proc. Technol. 1 , 144–152 (2012) [CrossRef] [Google Scholar]
  26. A. Fereidoon, F. Sadri, H. Hemmatian, Functionally graded materials optimization using particle swarm-based algorithms, J. Therm. Stresses 35 , 377–392 (2012) [CrossRef] [Google Scholar]
  27. J. Der-Duh, D.G. Brown, Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation, Comput. Environ. Urban Syst. 31 , 253–281 (2007) [CrossRef] [Google Scholar]
  28. R. Şahin, O. Turkbey, A simulated annealing algorithm to find approximate Pareto optimal solutions for the multi-objective facility layout problem, Int. J. Adv. Manufact. 41 , 1003–1018 (2009) [CrossRef] [Google Scholar]
  29. S. Jafari, M.H. Hojjati, A. Fathi, Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density, Int. J. Pressure Vessels Piping 92 , 41–47 (2012) [CrossRef] [Google Scholar]
  30. Suman, P. Kumar, A survey of simulated annealing as a tool for single and multi-objective optimization, J. Oper. Res. Soc. 57 , 1143–1160 (2006) [CrossRef] [Google Scholar]
  31. H. Kumar Singh, T. Ray, W. Smith, C-PSA constrained Pareto simulated annealing, Inf. Sci. 180 , 2499–2513 (2010) [CrossRef] [Google Scholar]
  32. F. Luna, P. Isasi, Multi-objective metaheuristics for multidisciplinary engineering applications, Eng. Optim. 44 , 241–242 (2012) [CrossRef] [Google Scholar]
  33. P. Serafini, Mathematics of Multi Objective Optimization, International Centre for Mechanical Sciences, No. 289 (Springer Verlag, Wien New York, 1985) [CrossRef] [Google Scholar]
  34. Suman, Study of simulated annealing based algorithms for multi-objective optimization of a constrained problem, Comput. Chem. Eng. 28 , 1849–1871 (2004) [CrossRef] [Google Scholar]
  35. A. Suppapitnarm, A simulated annealing algorithm for multi-objective optimization, Eng. Optim. 33 , 59–85 (2000) [CrossRef] [Google Scholar]
  36. P.P. Czyzak, A. Jaszkiewicz, Pareto simulated annealing − a metaheuristic technique for multiple-objective combinatorial optimization, J. Multi-Criteria Decis. Anal. 7 , 34–47 (1998) [CrossRef] [Google Scholar]
  37. E.L. Ulungu, J. Teghem, P.H. Fortemps, D. Tuyttens, MOSA method: a tool for solving multiobjective combinatorial optimization problems, J. Multicrit. Decis. Anal. 8 , 221–236 (1999) [CrossRef] [Google Scholar]
  38. M. Akbulut, O.S. Fazil, Design optimization of laminated composites using a new variant of simulated annealing, Comput. Struct. 89 , 1712–1724 (2011) [CrossRef] [Google Scholar]
  39. W.J. Gutjahr, A. Pichler, Stochastic multi-objective optimization: a survey on non-scalarizing methods, Ann. Oper. Res. 236 , 475–499 (2016) [CrossRef] [Google Scholar]
  40. G.P. Rangaiah, Multi-Objective Optimization: Techniques and Applications in Chemical Engineering , 2nd edn. (Advances in Process Systems Engineering, World Scientific Publishing, 2017), Vol. 5 [CrossRef] [Google Scholar]
  41. J.C. Chen, Y.Y. Chen, T.L. Chen, J.Z. Lin, Comparison of simulated annealing and tabu-search algorithms in advanced planning and scheduling systems for TFT-LCD colour filter fabs, Int. J. Comput. Integr. Manufactur. 30 , 516–534 (2017) [CrossRef] [Google Scholar]
  42. K. Deb, Current trends in evolutionary multi-objective optimization, Int. J. Simul. Multidiscipl. Des. Optim. 1 , 1–8 (2007) [CrossRef] [Google Scholar]
  43. X. Tang, D.H. Bassir, W. Zhang, Shape, sizing optimization and material selection based on mixed variables and genetic algorithm, Optim. Eng. 12 , 111–128 (2011) [CrossRef] [Google Scholar]
  44. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbloth, A.H. Teller, E. Teller, Equation of state calculation by fast computing machines, J. Chem. Phys. 21, 1087–1092 (1953) [NASA ADS] [CrossRef] [Google Scholar]
  45. R. Cho, J.H. Choi, A yield-criteria tailoring of the volume fraction in metal-ceramic functionally graded material, Eur. J. Mech. A 23 , 271–281 (2004) [CrossRef] [Google Scholar]
  46. S. Zhan, J. Lin, Z. Zhang, Y. Zhong, List-based simulated annealing algorithm for traveling salesman problem, Comput. Intell. Neurosci. 2016 , 1–12 (2016) [CrossRef] [Google Scholar]
  47. Y.W. Leung, Y. Wang, Multiobjective programming using uniform design and genetic algorithm, IEEE Trans. Syst. Man Cybern. C 30 , 293–304 (2000) [CrossRef] [Google Scholar]
  48. H. Ishibuchi, T. Murata, A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Trans. Syst. Man Cybern. C 28 , 392–403 (1998) [CrossRef] [Google Scholar]
  49. S.L. Ho, Sh. Yang, H.C. Wong, G. Ni, A simulated annealing algorithm for multiobjective optimizations of electromagnetic devices, IEEE Trans. Magn. 39 , 1285–1288 (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.