Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 8, 2017
Article Number A1
Number of page(s) 8
DOI https://doi.org/10.1051/smdo/2016015
Published online 13 January 2017
  1. Ezugwu EO, Wanga ZM, Machadop AR. 1998. The machinability of nickel-based alloys: a review. J. Mater Process. Technol., 86(1–3), 1–16. [Google Scholar]
  2. Zhang Q, Tang R, Yin K, Luo X, Zhang L. 2009. Corrosion behavior of Hastelloy C- 276 in supercritical water. Corros. Sci., 51, 2092–2097. [CrossRef] [Google Scholar]
  3. Bohm H, Ehrlich K, Kramer KH. 1970. Metall., 24, 139–144. [Google Scholar]
  4. Kohl HK, Peng K. 1981. J. Nucl. Mater., 101, 243–250. [CrossRef] [Google Scholar]
  5. Quist WE, Taggart R, Polonis DG. 1971. Metall. Trans., 2, 825–832. [CrossRef] [Google Scholar]
  6. Sundararaman M, Mukhopadhyay P, Banerjee S. 1988. Metall. Trans. A, 19, 453–465. [CrossRef] [Google Scholar]
  7. Charles T. 1994. Int. J. Press. Vessels Piping, 59, 41–49. [CrossRef] [Google Scholar]
  8. Shankar V, Rao KBS, Mannan SL. 2001. J. Nucl. Mater., 288, 222–232. [CrossRef] [Google Scholar]
  9. Shoemaker LE. 2005. Superalloys 718, 625, 706 and Various Derivatives. Loria EA, Editor. TMS: Warrendale, PA. p. 409–418. [CrossRef] [Google Scholar]
  10. Singh VB, Gupta A. 2000. The electrochemical corrosion and passivation behavior of Monel 400 in concentrated acids and their mixtures. Trans. JWRI, 34, 19–23. [Google Scholar]
  11. Haynes Hastelloy C-22HS Standard Product Catalogue. 2007. Haynes International: Indiana. p. 2–16. [Google Scholar]
  12. Jindal PC, Santhanam AT, Schleinkofer U, Shuster AF. 1999. Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int. J. Recfrac. Met. Hard Mater., 17, 163–170. [Google Scholar]
  13. Website of trademark owner of Hastelloy C-276. www.hynesintl.com. [Google Scholar]
  14. Wang M. 1997. Ph.D. Thesis, South Bank University, London. [Google Scholar]
  15. Richards N, Aspinwall DD. 1989. Use of ceramic tools for machining nickel-based alloys. Int. J. Mach. Tools Manuf., 29(4), 575–588. [CrossRef] [Google Scholar]
  16. Ezugwu EO, Wang ZM. 1996 Performance of PVD and CVD coated tools when machining nickel-based, Inconel 718 alloy, in Progress of Cutting and Grinding, Vol. 111. p. 102–107. [Google Scholar]
  17. Khamsehzadeh H. 1991. Behavior of ceramic cutting tools when machining superalloys. PhD Thesis, Universtiy of Warwick. [Google Scholar]
  18. Barry J, Byrne G. 2001. Cutting tool wear in the machining of hardened steels. Part I. Cubic boron nitride cutting tool wear. Wear, 247, 139–151. [CrossRef] [Google Scholar]
  19. Kramer BM, Hartung PD. 1980. Proc. Int. Conf. of Cutting Tool Mat.. Fort Mitchell, KY. p. 57–74. [Google Scholar]
  20. Focke AE, Westermann FE, Ermi A, Yavelak J, Hoch M. 1975. Failure mechanisms Of superhard materials when cutting superalloys. Proc. 4th Int.-Am. Conf. Mat. Tech., Caracus, Venezuela. p. 488–497 [Google Scholar]
  21. Konig W, Berktold A, Liermann J, Winands N. 1994. Top quality components not only by grinding. Ind. Diamond Rev., 3, 127–132. [Google Scholar]
  22. Çakır C. 2000. Modern metal cutting principles. Vipaş: Bursa. [Google Scholar]
  23. Valencia JJ, Spirko J, Schmees R. 1997. Superalloys 718, 625, 706 and Various Derivates. Loria EA, Editor. TMS: Warrendale, PA. p. 753–762. [CrossRef] [Google Scholar]
  24. Sun S, Brandt M, Dargusch MS. 2009. Characteristics of cutting forces and chi formation in machining of titanium alloys. Int. J. Mach. Tools Manuf., 49, 561–568. [CrossRef] [Google Scholar]
  25. Ranganath S, Campbell AB, Gorkiewicz DW. 2007. A model to calibrate and predict forces in machining with honed cutting tools or inserts. Int. J. Mach. Tools Manuf., 47, 820–840. [CrossRef] [Google Scholar]
  26. Topal ES, Cogun C. 2005. A cutting force induced error elimination method for turning operations. J. Mater. Process. Technol., 170, 192–203. [CrossRef] [Google Scholar]
  27. Montgomery DC. 1997. Design and analysis of experiments, 4th edn. Wiley: New York. [Google Scholar]
  28. Yavaşkan M, Taptık Y, ve Urgen M. 2004. Deney tasarımı yontemi ile matkap uclarında performans optimizasyonu. İTÜ Dergisi/d, 3(6), 117–128. [Google Scholar]
  29. Nalbant M, Gokkaya H, Sur G. 2007. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Des., 28, 1379–1385. [CrossRef] [Google Scholar]
  30. Yang WH, Tarng YS. 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. Technol., 84(1–3), 122–129. [CrossRef] [Google Scholar]
  31. Roy RK. 1990. A primer on the Taguchi method. Van Nostrand Reinhold: New York. [Google Scholar]
  32. Tosun G. 2011. Statistical analysis of process parameters in drilling of AL/SIC P metal matrix composite. Int. J. Adv. Manuf. Technol., 55(5–8), 477–485. [CrossRef] [Google Scholar]
  33. Taskesen A, Kutukde K. 2013. Optimization of the drilling parameters for the cutting forces in B4C-reinforced Al-7XXX-series alloys based onthe Taguchi method. Mater. Tehnol., 47(2), 169–176. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.