Open Access
Int. J. Simul. Multisci. Des. Optim.
Volume 6, 2015
Article Number A8
Number of page(s) 12
Published online 26 January 2016
  1. Seibert HF. 2006. Applications for PMI foams in aerospace sandwich structures. Reinforced Plastics, 50(1), 44–48. [CrossRef] [Google Scholar]
  2. Li Q, Mines R. 2002. Strain measures for rigid crushable foam in uniaxial compression. Strain, 38(4), 132–140. [CrossRef] [Google Scholar]
  3. Li Q, Mines R, Birch R. 2000. The crush behaviour of Rohacell-51WF structural foam. International Journal of Solids and Structures, 37(43), 6321–6341. [CrossRef] [Google Scholar]
  4. Chen C, Anderson W, Lakes R. 1994. Relating the properties of foam to the properties of the solid from which it is made. Cellular Polymers, 13(1), 16–32. [Google Scholar]
  5. Burman M, Zenkert D. 1997. Fatigue of foam core sandwich beams – 1: undamaged specimens. International Journal of Fatigue, 19(7), 551–561. [CrossRef] [Google Scholar]
  6. Zenkert D, Burman M. 2009. Tension, compression and shear fatigue of a closed cell polymer foam. Composites Science and Technology, 69(6), 785–792. [CrossRef] [Google Scholar]
  7. Zenkert D, Burman M. 2011. Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams. International Journal of Fatigue, 33(2), 217–222. [CrossRef] [Google Scholar]
  8. Akay M, Hanna R. 1990. A comparison of honeycomb-core and foam-core carbon-fibre/epoxy sandwich panels. Composites, 21(4), 325–331. [CrossRef] [Google Scholar]
  9. Tsang P, Dugundji J. 1992. Damage resistance of graphite/epoxy sandwich panels under low speed impacts. Journal of the American Helicopter Society, 37(1), 75–81. [CrossRef] [Google Scholar]
  10. Bernard ML, Lagace PA. 1989. Impact resistance of composite sandwich plates. Journal of Reinforced Plastics and Composites, 8(5), 432–445. [CrossRef] [Google Scholar]
  11. Wu C, Sun C. 1996. Low velocity impact damage in composite sandwich beams. Composite Structures, 34(1), 21–27. [CrossRef] [Google Scholar]
  12. Benderly D, Putter S. 2004. Characterization of the shear/compression failure envelope of Rohacell foam. Polymer Testing, 23(1), 51–57. [CrossRef] [Google Scholar]
  13. Kazemahvazi S, Tanner D, Zenkert D. 2009. Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme. Composites Science and Technology, 69(7), 920–925. [CrossRef] [Google Scholar]
  14. McGarva L, Åström B. 1999. Experimental investigation of compression moulding of glass/PA12-PMI foam core sandwich components. Composites Part A: Applied Science and Manufacturing, 30(10), 1171–1185. [CrossRef] [Google Scholar]
  15. Can W, Hao-ran C, Zhen-kun L. 2010. Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface. Composite Structures, 92(5), 1085–1091. [CrossRef] [Google Scholar]
  16. Mamalis A, Spentzas K, Manolakos D, Ioannidis M, Papapostolou D. 2008. Experimental investigation of the collapse modes and the main crushing characteristics of composite sandwich panels subjected to flexural loading. International Journal of Crashworthiness, 13(4), 349–362. [CrossRef] [Google Scholar]
  17. Flores-Johnson E, Li Q. 2011. Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core. Composites Part B: Engineering, 42(5), 1212–1219. [CrossRef] [Google Scholar]
  18. Yang F, Lin Q, Jiang J. 2015. Experimental study on fatigue failure and damage of sandwich structure with PMI foam core. Fatigue & Fracture of Engineering Materials & Structures, 38(4), 456–465. [CrossRef] [Google Scholar]
  19. Rinker M, John M, Zahlen PC, Schäuble R. 2011. Face sheet debonding in CFRP/PMI sandwich structures under quasi-static and fatigue loading considering residual thermal stress. Engineering Fracture Mechanics, 78(17), 2835–2847. [CrossRef] [Google Scholar]
  20. Shipsha A, Hallström S, Zenkert D. 2003. Failure mechanisms and modelling of impact damage in sandwich beams-a 2D approach: part I-experimental investigation. Journal of Sandwich Structures and Materials, 5(1), 7–31. [CrossRef] [Google Scholar]
  21. Rizov V, Shipsha A, Zenkert D. 2005. Indentation study of foam core sandwich composite panels. Composite Structures, 69(1), 95–102. [CrossRef] [Google Scholar]
  22. Mamalis A, Manolakos D, Ioannidis M, Papapostolou D. 2005. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental. Composite Structures, 71(2), 246–257. [CrossRef] [Google Scholar]
  23. Gibson LJ, Ashby MF. 1997. Cellular solids: structure and properties. Cambridge University Press. [CrossRef] [Google Scholar]
  24. Chen C, Lakes R. 1995. Analysis of the structure-property relations of foam materials. Cellular Polymers, 14(3), 186–202. [Google Scholar]
  25. Simone A, Gibson L. 1998. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia, 46(6), 2139–2150. [CrossRef] [Google Scholar]
  26. Pei H. 2005. ROHACELL Technical Manual. Yingchuang Degussa (China) Investment Co., Ltd. Shanghai Branch: China. [Google Scholar]
  27. Zenkert D. 1997. The handbook of sandwich construction. UK Engineering Materials Advisory Services Ltd/Chameleon Press Ltd: London. [Google Scholar]
  28. Allen G. 1969. Analysis and Design of Structural Sandwich Panels. Pergamon Press: Oxford. p. 1969. [Google Scholar]
  29. GB/T 1456-2005. 2005. Test method for flexural properties of sandwich construction. Standardization Administration of the People’s Republic of China: Beijing, China. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.