Open Access
Issue |
Int. J. Simul. Multisci. Des. Optim.
Volume 6, 2015
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/smdo/2015001 | |
Published online | 29 April 2015 |
- Arnold DV, Hansen N. 2012. A (1+1)-CMA-ES for constrained optimisation, in Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, New York, NY, USA, p. 297–304, ACM. [Google Scholar]
- Beyer H-G, Finck S. 2012. On the design of constraint Covariance Matrix Self-Adaptation Evolution Strategies including a cardinality constraint. IEEE Transactions on Evolutionary Computation, 16(4), 578–596. [CrossRef] [Google Scholar]
- Branke J, Schmidt C. 2003. Selection in the presence of noise, in Genetic and Evolutionary Computation Conference, Chicago, IL, USA. [Google Scholar]
- Coello Coello CA. 2000. Constraint-handling using an evolutionary multiobjective optimization technique. Civil Engineering Systems, 17(4), 319–346. [CrossRef] [Google Scholar]
- Collange G, Reynaud S, Hansen N. 2010. Covariance Matrix Adaptation Evolution Strategy for multidisciplinary optimization of expendable launcher family, in 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort-Worth, TX. [Google Scholar]
- De Melo VV, Iacca G. 2014. A modified Covariance Matrix Adaptation Evolution Strategy with adaptive penalty function and restart for constrained optimization. Expert Systems with Applications, 41(16), 7077–7094. [CrossRef] [Google Scholar]
- Eberhart RC, Kennedy J. 1995. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, New York, NY, p. 39–43. [Google Scholar]
- Hansen N. 2009. Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed, in Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, Montreal, Qubec, Canada, p. 2397–2402, ACM. [Google Scholar]
- Hansen N, Auger A, Ros R, Finck S, Pošík P. 2010. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, in Proceedings of the 12th annual conference companion on Genetic and evolutionary computation, p. 1689–1696, ACM. [Google Scholar]
- Hansen N, Müller S, Koumoutsakos P. 2003. Reducing the time complexity of the derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), 1–18. [Google Scholar]
- Hansen N, Niederberger AS, Guzzella L, Koumoutsakos P. 2009. A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation, 13(1), 180–197. [CrossRef] [Google Scholar]
- Holland JH. 1975. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan, USA. [Google Scholar]
- Karaboga D. 2005. An idea based on honey bee swarm for numerical optimization, Technical report, Technical report-tr06, Erciyes University, engineering faculty, computer engineering department. [Google Scholar]
- Kramer O, Barthelmes A, Rudolph G. 2009. Surrogate constraint functions for CMA Evolution Strategies, in KI 2009: Advances in Artificial Intelligence, Springer, Verlag Berlin Heidelberg, p. 169–176. [CrossRef] [Google Scholar]
- Larson JM. 2012. Derivative free optimization of noisy functions. PhD thesis, University of Colorado. [Google Scholar]
- Mezura-Montes E, Coello Coello CA. 2011. Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm and Evolutionary Computation, 1(4), 173–194. [CrossRef] [Google Scholar]
- Price K, Storn RM, Lampinen JA. 2006. Differential evolution: a practical approach to global optimization, Springer, Verlag Berlin Heidelberg. [Google Scholar]
- Rowell LF, Korte JJ. 2003. Launch vehicle design and optimization methods and priority for the advanced engineering environment. NASA Technical Report NASA/TM-2003, 212654. [Google Scholar]
- Schwefel H-P, Rudolph G. 1995. Contemporary evolution strategies, Springer, Verlag Berlin Heidelberg. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.