Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 4, Number 1, January 2010
Page(s) 39 - 47
DOI https://doi.org/10.1051/ijsmdo/2010006
Published online 21 July 2011
  1. F. Dohmann, C. Hertl. Tube hydroforming reserach and praticla apllication, Journal of Materials Processing Technology, 71, 174-186, (1997). [CrossRef] [Google Scholar]
  2. Y. Jae-Bong, J. Byung, O. Soo. The tube bending technology of a hydroforming process for an automative part, Journal of Materials Processing technology, 111, 175-181, (2001). [CrossRef] [Google Scholar]
  3. Y.S. Shin, H.Y. Kim, B.H. Jeon, S.I. Oh. Prototype tryout and design for automotive parts using welded blank hydro forming, J. Mater. Process techno., 130-131, 121-127, (2002). [CrossRef] [Google Scholar]
  4. R.M. Natal Jorge, A.P. Roque, R.A.F. Valente, M.P.L. Parente, A. Fernandes. A study of hydro formed tailor-welded tubular parts with dissimilar thickness, J. Mater. Process Techno. 184, 363-371, (2007). [CrossRef] [Google Scholar]
  5. G. Liu, S. Yuan, G. Chu. FEA on deformation behavior of tailor-welded tube in hydroforming, J. Mater Process Techno. 187-188, 287-291, (2007). [CrossRef] [Google Scholar]
  6. J.P. Abrantes, A. Szabo-Ponce, G.F. Batalha. Experimental and numerical simulation of tube hydroforming (THF), J. Mater Process Techno.164-165, 1140-1147, (2005). [Google Scholar]
  7. L. Lang, S. Yuan, X. Wang, Z.R. Wang, Z. Fu, J. Danckert, K.B. Nielsen. A study on numerical simulation of hydroforming of aluminum alloy tube, J. Mater Process Techno. 146, 377-388, (2004). [CrossRef] [Google Scholar]
  8. M. Ayadi, H. Cherouat, N. Mezghani, M.A. Rezgui. Experimental and numerical studies of welded tube formability, 6th International Forum on Advanced Material Science and Technology, Hong Kong, June 12-14, (2008). [Google Scholar]
  9. G. Liu, S. Yuan, G. Chu. FEA on deformation behavior of tailor-welded tube in hydroforming, J. Mater. Process; Techno. 187-188, 287-291, (2007). [CrossRef] [Google Scholar]
  10. N. Mezghani, H. Salhi, M. Ayadi, A. Cherouat. Experimental and numerical simulation of hydroforming process, International review of mechanical engineering, to appear (2009). [Google Scholar]
  11. M. Imaninejad, G. Subhash, A. Loukus. Influence of end conditions during tube hydro forming of aluminum extrusions, I. J. Mech. Scien. 46, 1195-1212, (2004). [CrossRef] [Google Scholar]
  12. P. Ray, B.J. Mac Donald. Determination of the optimal load path for tube hydro forming processes using a fuzzy load algorithm and finite element analysis, Finite element in Analysis and Design, 41, 173-192, (2004). [CrossRef] [Google Scholar]
  13. G. Neffussi, A. Combescure. Coupled buckling and plastic instability for tube hydroforming, I. J. Mech. Scien. 44, 899-914, (2002). [CrossRef] [Google Scholar]
  14. K.I. Johnson, B.N. Nguyen, R.W. Davies, G.J. Grant, M.A. Khaleel. A numerical process control method for circular tube hydroforming prediction, I. J. Plasticity, 20, 1111-1137, (2004). [CrossRef] [Google Scholar]
  15. S. Yuan, W. Yuan, X. Wang. Effect of rinkling behavior on formability and thickness distribution in tube hydroforming, J. Mater. Process Techno., 177, 668-671, (2006). [CrossRef] [Google Scholar]
  16. M. Koç. Investigation of the effect of loading path and variation in materiel proprieties on robistness for tube hydro forming, J. Mater. Process. Techno. 133, 276-281, (2003). [CrossRef] [Google Scholar]
  17. K.J. Fann, P.Y. Hsiao. Optimization of loading conditions for tube hydroforming, J/ Mater. Process. Techno 140, 520-524, (2003). [CrossRef] [Google Scholar]
  18. K. Manabe, M. Suetake, H. Koyama, M. Yang. Hydroforming process optimization of aluminum alloy tube using intelligent control technique, I. J. Machine Tools & Mnuf. 46, 1207-1211, (2006). [CrossRef] [Google Scholar]
  19. T. Hama, T. Ohkubo, K. Kurisu, H. Fujimoto, H. Takuda. Formability of tube hydroforming under various loading paths, J. Mater. Process. Techno. 177, 676-679, (2006). [CrossRef] [Google Scholar]
  20. R.M. Natal Jorge, A.P. Roque, R.A.F. Valente, M.P.L. Parente, A. Fernandes. A study of hydro formed tailor-welded tubular parts with dissimilar thickness, J. Mater. Process. Techno. 184, 363-371, (2007). [CrossRef] [Google Scholar]
  21. A. Cherouat, K. Saanouni, Y. Hammi. Numerical improvement of thin tubes hydroforming with respect to ductile damage, I. J. Mech. Scien 44, 2427-2446, (2002). [CrossRef] [Google Scholar]
  22. M. Imaninejad, G. Subhash, A. Loukus. Experimental and numerical investigation of free-bulge formation during hydroforming of aluminium extrusions, J. Mater. Process. techno. 147, 247-254, (2004). [CrossRef] [Google Scholar]
  23. P. Bortot, E. Ceretti, C. Giardini. The determination of flow stress of tuular material for hydroforming, J. Mater. Process. Techno. 203, 381-388, (2008). [CrossRef] [Google Scholar]
  24. C. Levaillant, J.L. Chenot. Physical modelling and numerical prediction of defects in sheet metal forming, J. Mater. Process. Techno. 32, 383-397, (1992). [CrossRef] [Google Scholar]
  25. P. Hora, L. Tong, J.A. Reissner. Prediction method for ductile sheet metal failure in Fe simulation, Wagonner et al. Eds, Proceedings of Numisheet'96, 252-256, (1996). [Google Scholar]
  26. X. Liang. Stress based fracture envelope for damage plastic solids, Engineering Fracture Mechanics 76, 419-438, (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.