Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 4, Number 1, January 2010
Page(s) 11 - 25
DOI https://doi.org/10.1051/ijsmdo/2010003
Published online 21 July 2011
  1. R. Agarwal, M. Bohner, D. O'Regan, A. Peterson. Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141 (1-2), 1-26, (2002). [Google Scholar]
  2. C.D. Ahlbrandt, C. Morian. Partial differential equations on time scales, J. Comput. Appl. Math., 141 (1-2), 35-55, (2002). [Google Scholar]
  3. R. Almeida, D.F.M. Torres. Isoperimetric problems on time scales with nabla derivatices, J. Vib. Control, 15 (6), 951-958, (2009). [Google Scholar]
  4. F.M. Atici, D.C. Biles, A. Lebedinsky. An application of time scales to economics, Math. Comput. Modelling, 43 (7-8), 718-726, (2006). [Google Scholar]
  5. F.M. Atici, G.Sh. Guseinov. On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141 (1-2), 75-99, (2002). [Google Scholar]
  6. F.M. Atici, C.S. McMahan. A comparison in the theory of calculus of variations on time scales with an application to the Ramsey model, Nonlinear Dyn. Syst. Theory, 9 (1), 1-10, (2009). [Google Scholar]
  7. F.M. Atici, F. Uysal. A production-inventory model of HMMS on time scales, Appl. Math. Lett., 21 (3), 236-243, (2008). [Google Scholar]
  8. B. Aulbach, S. Hilger. A unified pproach to continuous and discrete dynamics, Qualitative theory of differential equations, Szeged 1988, Colloq. Math. Soc. Janos Bolyai, 53 North-Holland, Amsterdam, 37-56, (1990). [Google Scholar]
  9. G. Bangerezako. Variational q-calculus, J. Math. Anal. Appl., 289 (2), 650-665, (2004). [Google Scholar]
  10. Z. Bartosiewicz, N. Martins, D.F.M. Torres. The second Euler-Lagrange equation of variational calculus on time scales, Eur. J. Control, 17 (1), 1-10, (2011). [Google Scholar]
  11. Z. Bartosiewicz, D.F.M. Torres. Noether's theorem on time scales, J. Math. Anal. Appl., 342 (2), 1220-1226, (2008). [Google Scholar]
  12. M. Bohner. Calculus of variations on time scales, Dynam. Systems Appl., 13 (3-4), 339-349, (2004). [Google Scholar]
  13. M. Bohner, R.A.C. Ferreira, D.F.M. Torres. Integral inequalities and their applications to the calculus of variations on time scales, Math. Inequal. Appl. 13 (3), 511-522, (2010). [Google Scholar]
  14. M. Bohner, A. Peterson. Dynamic equations on time scales, Birkhäuser Boston, Boston, MA, (2001). [Google Scholar]
  15. M. Bohner, A. Peterson. Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, (2003). [Google Scholar]
  16. A.M.C. Brito da Cruz, N. Martins, D.F.M. Torres. Higher-order Hahn's quantum variational calculus, Nonlinear Anal. (in press). DOI:10.1016/j.na.2011.01.015 [Google Scholar]
  17. M.C. Caputo. Time scales: from nabla calculus to delta calculus and viceversa via duality, Int. J. Difference Equ. 5 (1), 25-40, (2010). [Google Scholar]
  18. E. Castillo, A. Luceno, P. Pedregal. Composition functionals in calculus of variations. Application to products and quotients, Math. Models Methods Appl. Sci. 18 (1), 47-75, (2008). [Google Scholar]
  19. R.A.C. Ferreira, A.B. Malinowska, D.F.M. Torres. Optimality conditions for the calculus of variations with higher-order delta derivatices, Appl. Math. Lett., 24 (1), 87-92, (2011). [Google Scholar]
  20. R.A.C. Ferreira, D.F.M. Torres. Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat., 9 (F07), 65-73, (2007). [Google Scholar]
  21. R.A.C. Ferreira, D.F.M. Torres. Higher-order calculus of variations on time scales, Mathematical control theory and finance, Springer, Berlin, 149-159, (2008). [Google Scholar]
  22. R.A.C. Ferreira, D.F.M. Torres. Isoperimetric problems of the calculus of variations on time scales, Nonlinear Analysis and Optimization II, Contemporary Mathematics 514, Amer. Math. Soc., Providence, RI, 123-131, (2010). [Google Scholar]
  23. I.M. Gelfand, S.V. Fomin. Calculus of variations, Revised English edition translated and edited by Richard A. Silverman Prentice-hall, Inc., Englewood Cliffs, N.J., (1963). [Google Scholar]
  24. E. Girejko, A.B. Malinowska, D.F.M. Torres. A unified approach to the calculus of variations on time scales, Proceedings of 2010 CCDC, Xuzhou, China, May 26-28, 2010, IEE Catalog Number CFP1051D-CDR, 595-600, (2010). DOI:10.1109/CCDC.2010.5498972 [Google Scholar]
  25. E. Girejko, A.B. Malinowska, D.F.M. Torres. Deltanabla optimal control problems, J. Vib. Control (in press.). DOI:10.1177/1077546310381271 [Google Scholar]
  26. E. Girejko, A.B. Malinowska, D.F.M. Torres. The contingent epiderivative and the calculus of variations on time scales, Optimization (in press.). DOI:10.1080/02331934.2010.506615 [Google Scholar]
  27. M. Gürses, G.Sh. Guseinov, B. Silindir. Integrable equations on time scales, J. Math. Phys. 46 (11), 113510, 22pp, (2005) [Google Scholar]
  28. S. Hilger. Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1-2), 18-56, (1990). [Google Scholar]
  29. V. Kac, P. Cheung. Quantum calculus, Springer, New York, (2002). [Google Scholar]
  30. W.G. Kelley, A.C. Peterson. Difference equations. An introduction with applications, Academic Press, Inc., Boston, MA, (1991). [Google Scholar]
  31. V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan. Dynamic systems on measure chains, Mathematics and its Applications, 370, Kluwer Acad. Publ., Dordrecht, (1996). [Google Scholar]
  32. A.B. Malinowska, N. Martins, D.F.M. Torres. Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett. 5 (1), 41-53, (2011). [Google Scholar]
  33. A.B. Malinowska, D.FM. Torres. Necessary and sufficient conditiosn for local Pareto optimality on time scales, J. Math. Sci. (N.Y.) 161 (6), 803-810, (2009). [Google Scholar]
  34. A.B. Malinowska, D.F.M. Torres. String minimizers of the calculus of variations on time scales and the Weierstrass condition, Proc. Est. Acad. Sci 58 (4), 205-212, (2009). [Google Scholar]
  35. A.B. Malinowska, D.F.M. Torres. Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci. 33 (14), 1712-1722, (2010). [Google Scholar]
  36. A.B. Malinowska, D.F.M. Torres. Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales, Appl. Math. Comput. 217 (3), 1158-1162, (2010). [Google Scholar]
  37. A.B. Malinowska, D.F.M. Torres. The delta-nabla calculus of variations, Fasc. Math. 44, 75-83, (2010). [Google Scholar]
  38. A.B. Malinowska, D.F.M. Torres. Delta-nabla isoperimetric problems, Int. J. Open Probl. Comput. Sci. Math. 3 (4), 124-137, (2010). [Google Scholar]
  39. A.B. Malinowska, D.F.M. Torres. The Hahn quantum variational calculus, J. Optim. Theory Appl. 147 (3), 419-442, (2010). [Google Scholar]
  40. A.B. Malinowska, D.F.M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales, Discrete Contin. Dyn. Syst. 29 (2), 577-593, (2011). [Google Scholar]
  41. A.B. Malinowska, D.F.M. Torres. Backward variational approach on time scales with an action depending on the free endpoints, Z. Naturforsch. A (in press) [Google Scholar]
  42. A.B. Malinowska, D.F.M. Torres. A general backwards calculus of variations via duality, Optim. Lett. (in press). DOI: 10.1007/s11590-010-0222-x [Google Scholar]
  43. N. Martins, D.F.M. Torres. Calculus of variations on time scales with nabla derivatives, Nonlinear Anal. 71 (12), e763-e773, (2009). [Google Scholar]
  44. N. Martins, D.F.M. Torres. Noether's symmetry theorem for nabla problems of the calculus of variations, Appl. Math. Lett. 23 (12), 1432-1438, (2010). [Google Scholar]
  45. E. Pawluszewicz, D.F.M. Torres. Backward linear control systems on time scales, Internat. J. Control 83 (8), 1573-1580, (2010). [Google Scholar]
  46. J. Seiffertt, S. Sanyal, D.C. Wunsch. Hamilton-Jacobi-Bellmam equations and approximate dynamic progrmming on time scales, IEEE Trans. Syst. Man Cybern. B 38 (4), 918-923, (2008). [Google Scholar]
  47. B. Van Brunt. The calculus of variations, Universitext, springer-Verlag, New York, (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.