| Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
Multi-modal Information Learning and Analytics on Cross-Media Data Integration
|
|
|---|---|---|
| Article Number | 16 | |
| Number of page(s) | 15 | |
| DOI | https://doi.org/10.1051/smdo/2025018 | |
| Published online | 20 October 2025 | |
Research Article
Humanized design strategy of urban public space based on multi-objective optimization algorithm
Macau University of Science and Technology, Macau 999078, PR China
* e-mail: 3230005411@student.must.edu.mo
Received:
28
July
2025
Accepted:
22
August
2025
Current humanistic design of urban public spaces focuses on specific design elements while ignoring the conflicts and couplings between multiple user needs. This leads to spatial strategies stuck in local optima and lacking overall balance and adaptability. This paper constructs a multi-objective optimization model that integrates user preferences, multidimensional spatial indicators, and behavioral simulation. This model collects field data such as heat maps, path trajectories, and dwell time, identifies user types through K-means clustering, and models their spatial preferences using fuzzy membership functions. Design variables are set in Grasshopper; an optimization function is constructed; the optimal solution is searched using NSGA-III. Finally, pedestrian simulation is performed in AnyLogic, and the optimization results are corrected for function deviation to improve the coordination and adaptability of the design. Experimental results show that this strategy framework significantly improves spatial coordination, increasing weighted average satisfaction from 0.61 to 0.81 (+32.8%), reducing safety risks by 30.8% to 63.2%, and increasing interaction promotion by 71.2%. Multi-dimensional indicators verify the effectiveness of the optimization strategy in balancing user needs, alleviating local conflicts, and enhancing spatial adaptability, providing a quantitative basis and practical path for systematically solving the local optimal problem of humanized design of public spaces.
Key words: Human-centered design / public space optimization / multi-objective model / user preference clustering / behavior simulation
© Q. Wang, Published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
