Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
|
|
---|---|---|
Article Number | A6 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/smdo/2019007 | |
Published online | 21 March 2019 |
Research Article
Current correction and fuzzy logic optimizations of Perturb & Observe MPPT technique in photovoltaic panel
Laboratory of Innovative Technologies, National School of Applied Sciences, Abdelmalek Essaâdi University, 93030 Tangier, Morocco
* e-mail: meriem.ourahou@gmail.com
Received:
29
December
2017
Accepted:
17
February
2019
This paper presents a two-way optimization of the Perturb & Observe (P&O) maximum power point tracking (MPPT) technique using current correction and fuzzy logic techniques. In fact, photovoltaic (PV) energy has become more and more coveted today. In the future, it will become a necessity. To ensure its optimization, maximum operating point tracking method is considered as a technological key in PV systems. One of the most used MPPT methods is the P&O technique. In this paper, we will focus on optimizing this method based on two techniques. A first attempt has been made to estimate a current correction of the P&O algorithm in case of illumination variation. Then, fuzzy logic optimization attempt had been highlighted to improve power loss. It is shown that both proposed techniques are very effective and allow considerable improvement of accuracy and are less affected by sudden variation of climatic parameters. The proposed approaches are tested via Matlab software and compared the classical P&O algorithm. Through applications, we could conclude that the two optimized proposed methods offer a remarkable improvement concerning power losses.
Key words: MPPT / Perturb & Observe algorithm / Fuzzy logic / Current correction / Photovoltaic energy
© M. Ourahou et al., published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.