Issue |
Int. J. Simul. Multisci. Des. Optim.
Volume 7, 2016
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/smdo/2016004 | |
Published online | 12 February 2016 |
Research Article
Backbone cup – a structure design competition based on topology optimization and 3D printing
Engineering Simulation and Aerospace Computing (ESAC), Northwestern Polytechnical University, Xi’an, Shaanxi
710072, P.R. China
* e-mail: JH.Zhu_FEA@nwpu.edu.cn
Received:
12
January
2016
Accepted:
17
January
2016
This paper addresses a structure design competition based on topology optimization and 3D Printing, and proposes an experimental approach to efficiently and quickly measure the mechanical performance of the structures designed using topology optimization. Since the topology optimized structure designs are prone to be geometrically complex, it is extremely inconvenient to fabricate these designs with traditional machining. In this study, we not only fabricated the topology optimized structure designs using one kind of 3D Printing technology known as stereolithography (SLA), but also tested the mechanical performance of the produced prototype parts. The finite element method is used to analyze the structure responses, and the consistent results of the numerical simulations and structure experiments prove the validity of this new structure testing approach. This new approach will not only provide a rapid access to topology optimized structure designs verifying, but also cut the turnaround time of structure design significantly.
Key words: Structure design competition / Topology optimization / Stereolithography / Quick structure testing
© J.-H Zhu et al., Published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.