Open Access
期号
Int. J. Simul. Multidisci. Des. Optim.
卷号 16, 2025
文献编号 7
页数 16
DOI https://doi.org/10.1051/smdo/2025006
网上发表时间 2025年4月29日
  1. D. O'Rourke, Economic importance of the world apple industry, The apple genome 1–18 (2021). https://doi.org/10.1007/978-3-030-74682-7-1 [Google Scholar]
  2. E. Arrigoni, D. Albanese, C.M.O. Longa, D. Angeli, C. Donati, C. Ioriatti, I. Pertot, M. Perazzolli, Tissue age, orchard location and disease management influence the composition of fungal and bacterial communities present on the bark of apple trees, Environ. Microbiol. 22, 2080–2093 (2020) [Google Scholar]
  3. X. Liang, R. Zhang, M.L. Gleason, G. Sun, Sustainable apple disease management in China: Challenges and future directions for a transforming industry, Plant Dis. 106, 786–799 (2022) [CrossRef] [Google Scholar]
  4. P. Bansal, R. Kumar, S. Kumar, Disease detection in apple leaves using deep convolutional neural network, Agriculture 11, 617 (2021) [CrossRef] [Google Scholar]
  5. H. Azgomi, F.R. Haredasht, M.R.S. Motlagh, Diagnosis of some apple fruit diseases by using image processing and artificial neural network, Food Control 145, 109484 (2023) [Google Scholar]
  6. M. Jan H. Ahmad, Image features based intelligent apple disease prediction system: Machine learning based apple disease prediction system, Int. J. Agric. Environ. Inf. Syst. 11, 31–47 (2020) [Google Scholar]
  7. A.J. Moshayedi, A.S. Khan, M. Davari, T. Mokhtari, M.E. Andani, Micro robot as the feature of robotic in healthcare approach from design to application: The state of art and challenges, EAI Endorsed Trans. AI Robot. 3 (Apr. 2024). https://doi.org/10.4108/airo.5602 [Google Scholar]
  8. A.A. Bracino, R.S. Concepcion, R.A.R. Bedruz, E.P. Dadios, and R.R.P. Vicerra, Development of a hybrid machine learning model for apple (Malus domestica) health detection and disease classification, in: 2020 IEEE 12th Int. Conf. Humanoid, Nanotechnol., Inf. Technol., Commun. Control, Environ. Manage. (HNICEM) (IEEE, 2020), pp. 1–6. https://doi.org/10.1109/HNICEM51456.2020.9400139 [Google Scholar]
  9. V.D. Jose and K. Santhi, Early detection and classification of apple leaf diseases by utilizing IFPA genetic algorithm with MC-SVM, SVI and deep learning methods, Indian J. Sci. Technol. 15, 1440–1450 (2022). https://doi.org/10.17485/IJST/v15i29.1235 [Google Scholar]
  10. M.R. Kale and M.S. Shitole, Analysis of crop disease detection with SVM, KNN and random forest classification, Inf. Technol. Ind. 9, 364–372 (2021). [Google Scholar]
  11. S. Singh, S. Gupta, A. Tanta, and R. Gupta, Extraction of multiple diseases in apple leaf using machine learning, Int. J. Image Graph. 22, 2140009 (2022). https://doi.org/10.1142/S021946782140009X [Google Scholar]
  12. A.J. Moshayedi, A.S. Khan, J. Hu, A. Nawaz, and J. Zhu, E-nose-driven advancements in ammonia gas detection: A comprehensive review from traditional to cutting-edge systems in indoor to outdoor agriculture, Sustainability 15 (15), 11601 (2023). https://doi.org/10.3390/su151511601 [CrossRef] [Google Scholar]
  13. M. Sardoğan, Y. Özen, and A. Tuncer, Detection of apple leaf diseases using Faster R-CNN, Düzce Univ. Sci. Technol. J. 8, 1110–1117 (2020). https://doi.org/10.29130/dubited.648387 [Google Scholar]
  14. Z. Chen, R. Su, Y. Wang, G. Chen, Z. Wang, P. Yin, and J. Wang, Automatic estimation of apple orchard blooming levels using the improved YOLOv5, Agronomy 12 (10), 2483 (2022). https://doi.org/10.3390/agronomy12102483 [CrossRef] [Google Scholar]
  15. H. Sun, H. Xu, B. Liu, D. He, J. He, H. Zhang, and N. Geng, MEAN-SSD: A novel real-time detector for apple leaf diseases using improved lightweight convolutional neural networks, Comput. Electron. Agric. 189, 106379 (2021). https://doi.org/10.1016/j.compag.2021.106379 [Google Scholar]
  16. W. Luo, L. Cai, and Y. Yang, Apple leaf disease recognition in natural scenes based on re-parameterised SSD algorithm, in: Int. Conf. Comput. Graph., Artif. Intell., Data Process. (ICCAID 2022) (SPIE, 2023), 12604, 994–1006. https://doi.org/10.1117/12.2674686. [Google Scholar]
  17. F.O. Babalola, N.I. Kpai, and Ö. Toygar, Deep learning-based classification of apple leaf diseases using AlexNet, Comput. Sci. (IDAP-2023), 67–74 (2023). https://doi.org/10.53070/bbd.1349566 [Google Scholar]
  18. W. Bao, T. Fan, G. Hu, D. Liang, and H. Li, Detection and identification of tea leaf diseases based on AX-RetinaNet, Sci. Rep. 12, 2183 (2022). https://doi.org/10.1038/s41598-022-06181-z [CrossRef] [Google Scholar]
  19. X. Gao, Z. Tang, Y. Deng, S. Hu, H. Zhao, and G. Zhou, HSSNet: An end-to-end network for detecting tiny targets of apple leaf diseases in complex backgrounds, Plants 12 (15), 2806 (2023). https://doi.org/10.3390/plants12152806 [CrossRef] [Google Scholar]
  20. Y. Wang, P. Zhang, and S. Tian, Tomato leaf disease detection based on attention mechanism and multi-scale feature fusion, Front. Plant Sci. 15, 1382802 (2024). https://doi.org/10.3389/fpls.2024.1382802 [Google Scholar]
  21. L. Gao, X. Zhao, X. Yue, Y. Yue, X. Wang, H. Wu, and X. Zhang, A lightweight YOLOv8 model for apple leaf disease detection, Appl. Sci. 14 (15), 6710 (2024). https://doi.org/10.3390/app14156710 [CrossRef] [Google Scholar]
  22. M. Hussain, YOLOv1 to v8: Unveiling each variant − a comprehensive review of YOLO, IEEE Access 12, 42816–42833 (2024). https://doi.org/10.1109/ACCESS.2024.3378568 [Google Scholar]
  23. A.J. Moshayedi, A.S. Khan, Y. Yang, J. Hu, and A. Kolahdooz, Robots in agriculture: Revolutionizing farming practices, EAI Endorsed Trans. AI Robot. 3 (Jun. 2024). https://doi.org/10.4108/airo.5855 [Google Scholar]
  24. S. Liu, Y. Qiao, J. Li, H. Zhang, M. Zhang, and M. Wang, An improved lightweight network for real-time detection of apple leaf diseases in natural scenes, Agronomy 12 (10), 2363 (2022). https://doi.org/10.3390/agronomy12102363 [CrossRef] [Google Scholar]
  25. L. Fu, S. Li, Y. Sun, Y. Mu, T. Hu, and H. Gong, Lightweight convolutional neural network for apple leaf disease identification, Front. Plant Sci. 13, 831219 (2022). https://doi.org/10.3389/fpls.2022.831219 [Google Scholar]
  26. X. Chao, G. Sun, H. Zhao, M. Li, and D. He, Identification of apple tree leaf diseases based on deep learning models, Symmetry (Basel) 12, 1065 (2020). https://doi.org/10.3390/sym12071065 [CrossRef] [Google Scholar]
  27. Y. Wang, Y. Wang, and J. Zhao, MGA-YOLO: A lightweight one-stage network for apple leaf disease detection, Front. Plant Sci. 13, 927424 (2022). https://doi.org/10.3389/fpls.2022.927424 [Google Scholar]
  28. Q. Yang, S. Duan, and L. Wang, Efficient identification of apple leaf diseases in the wild using convolutional neural networks, Agronomy 12 (11), 2784 (2022). https://doi.org/10.3390/agronomy12112784 [CrossRef] [Google Scholar]
  29. I. Ahmed and P.K. Yadav, Predicting apple plant diseases in orchards using machine learning and deep learning algorithms, SN Comput. Sci. 5, 700 (2024). https://doi.org/10.1007/s42979-024-02959-2 [CrossRef] [Google Scholar]
  30. M.M.U. Nobi, M. Rifat, M.F. Mridha, S. Alfarhood, M. Safran, and D. Che, GLD-Det: Guava leaf disease detection in real-time using lightweight deep learning approach based on MobileNet, Agronomy 13, 2240 (2023). https://doi.org/10.3390/agronomy13092240 [CrossRef] [Google Scholar]
  31. S. Parez, N. Dilshad, T.M. Alanazi, and J.-W. Lee, Towards sustainable agricultural systems: A lightweight deep learning model for plant disease detection, Comput. Syst. Sci. Eng. 47, 515–536 (2023). https://doi.org/10.32604/csse.2023.037992 [Google Scholar]
  32. J. Ni, Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network, J. Phytopathol. 172, e13374 (2024). https://doi.org/10.1111/jph.13374 [CrossRef] [Google Scholar]
  33. M. Maaz, A. Shaker, H. Cholakkal, S. Khan, S.W. Zamir, R.M. Anwer, and F.S. Khan, EdgeNeXt: Efficiently amalgamated CNN-Transformer architecture for mobile vision applications, in: Eur. Conf. Comput. Vis. (Springer, 2022), pp. 3–20. https://doi.org/10.1007/978-3-031-25082-8_1 [Google Scholar]
  34. J. Li, Y. Wen, and L. He, SCConv: Spatial and channel reconstruction convolution for feature redundancy, in: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (2023) pp. 6153–6162. [Google Scholar]
  35. W. Liu, H. Lu, H. Fu, and Z. Cao, Learning to upsample by learning to sample, in: Proc. IEEE/CVF Int. Conf. Comput. Vis. (2023) pp. 6027–6037. [Google Scholar]
  36. Y.-F. Zhang, W. Ren, Z. Zhang, Z. Jia, L. Wang, and T. Tan, Focal and efficient IoU loss for accurate bounding box regression, Neurocomputing 506, 146–157 (2022). https://doi.org/10.1016/j.neucom.2022.07.042 [CrossRef] [Google Scholar]
  37. P. Pan, M. Shao, P. He, L. Hu, S. Zhao, L. Huang, G. Zhou, and J. Zhang, Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments, Front. Plant Sci. 15, 1383863 (2024). https://doi.org/10.3389/fpls.2024.1383863 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.