Open Access
期号
Int. J. Simul. Multidisci. Des. Optim.
卷号 4, 编号 1, January 2010
33 - 38
DOI https://doi.org/10.1051/ijsmdo/2010005
网上发表时间 2011年7月21日
  1. H. Andrews, B. Hunt. Digital image restoration, Prentice-Hall, Engelwood Cliffs, NJ, (1977). [Google Scholar]
  2. A.K. Jain. Fundamentals of digital image processing, Prentice-Hall, Engelwood Cliffs, NJ, (1989). [Google Scholar]
  3. R.L. Lagendjik, J. Biemond. Iterative identification and restoration of images, Norwell, MA: Kluwer Academic Publishers, (1991). [Google Scholar]
  4. H.W. Engl, M. Hanke, A. Neubauer. Regularization of inverse problems, Kluwer, Dordrecht, The Netherlands, 71-143, (1996). [Google Scholar]
  5. J. Kamm, J.G. Nagy. Kronecker product and SVD approximations in image restoration, linear Algebra and its Applications, 284, 177-192, (1998). [Google Scholar]
  6. J. Kamm, J.G. Nagy. Kronecker product approximation for restoration image with reflexive boundary conditions, SIAM J. Matrix Anal. Appl., 25 (3), 829-841, (2004). [Google Scholar]
  7. C.F. Van Loan, N.P. Pitsianis. Approximation with Kronecker products, M.S. Moonen, G.H. Golub (Eds.), Linear Algebra for large scale and real time applications, Kluwer Academic Publishers, Dordrecht, 293-314, (1993). [Google Scholar]
  8. G.R. Ayers, J.C. Dainty. Iterative blind deconvolution method and its applications, Optics Letters 13 (7), 547-549, (1988). [Google Scholar]
  9. L.B. Lucy,. An iterative technique for the rectification of observed distributions, Astronomical Journal, 79, 745-754, (1974). [Google Scholar]
  10. W.H. Richardson. Bayeian-based iterative method of image restoration, J. Optic. Soc. Amer. A, 62, 55-59, (1972). [Google Scholar]
  11. A. Pruessner, D.P. O'Leary. Blind deconvolution using a regularized structured total least norm algorithm, SIAM J. Matric Anal. Appl. 24 (4), 1018-1037, (2003). [Google Scholar]
  12. G.H. Golub, U. Von Matt. Tikhonov regularization for large scale problems, G.H. Golub, S.H. Lui, F. Luk, R. Plemmons (Eds.), Workshop on Scientific Computing, Springer, New York, 3-26, (1997). [Google Scholar]
  13. A. Bouhamidi, K. Jbilou. Sylvester Tokhonov regularization methods in image restoration, J. Comput. Appl. Math. 206 (1), 86-98, (2007). [Google Scholar]
  14. M. Hanke, P.C. Hansen. Regularization methods for large-scale problems, Surveys Math. Indust., 3, 253-315, (1993). [MathSciNet] [Google Scholar]
  15. P.C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34, 561-580, (1992). [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Calvetti, G.H. Golub, L. Reichel. Estimation of the L-curve via lanczos bidiagonalization, BIT, 39, 603-619, (1999). [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Calvetti, B. Lewis, L. Reichel. GMRES, L-curves and discrete ill-posed problems, BIT, 42, 44-65, (2002). [CrossRef] [MathSciNet] [Google Scholar]
  18. G.H. Golub, M. Heath, G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 215-223, (1979). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.