Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
Multi-modal Information Learning and Analytics on Cross-Media Data Integration
Article Number 14
Number of page(s) 21
DOI https://doi.org/10.1051/smdo/2025015
Published online 21 October 2025
  1. P. Maken, A. Gupta, 2D-to-3D: a review for computational 3D image reconstruction from X-ray images, Arch. Comput. Methods Eng. 30, 85–114 (2023) [Google Scholar]
  2. G. Yao, Z. Wang, G. Wei, F. Zhu, Q. Fu, Q. Yu, M. Wei, Multi-view three-dimensional reconstruction based on feature enhancement and weight optimization network, ISPRS Int. J. Geo-Inform. 14, 43–58 (2025) [Google Scholar]
  3. R. Jia, X. Chen, J. Cui, Z. Hu, MVS-T: a coarse-to-fine multi-view stereo network with transformer for low-resolution images 3D reconstruction, Sensors 22, 7659–7673 (2022) [Google Scholar]
  4. L.I. Xiangyu, Z.H.A.N.G. Xueqin, ORBTSDF-SCNet: an online 3D reconstruction method for dynamic scene, J. East China Univ. Sci. Technol. 49, 284–294 (2023) [Google Scholar]
  5. F. Luo, Y. Zhu, Y. Fu, H. Zhou, Z. Chen, C. Xiao, Sparse rgb-d images create a real thing: a flexible voxel based 3d reconstruction pipeline for single object, Visual Inform. 7, 66–76 (2023) [Google Scholar]
  6. Z. Li, M. Oskarsson, A. Heyden, Detailed 3D human body reconstruction from multi-view images combining voxel super-resolution and learned implicit representation, Appl. Intell. 52, 6739–6759 (2022) [Google Scholar]
  7. Y. Feng, R. Wu, X. Liu, L. Chen, Three-dimensional reconstruction based on multiple views of structured light projectors and point cloud registration noise removal for fusion, Sensors 23, 8675–8692 (2023) [Google Scholar]
  8. H. Luo, C. Pape, E. Reithmeier, Scale-aware multi-view reconstruction using an active triple-camera system, Sensors 20, 6726–6749 (2020) [Google Scholar]
  9. M. Chen, Z. Duan, Z. Lan, S. Yi, Scene reconstruction algorithm for unstructured weak-texture regions based on stereo vision, Appl. Sci. 13, 6407–6432 (2023) [Google Scholar]
  10. M. Oliveira, G.H. Lim, T. Madeira, P. Dias, V. Santos, Robust texture mapping using rgb-d cameras, Sensors 21, 3248–3270 (2021) [Google Scholar]
  11. T.J. Mu, H.X. Chen, J.X. Cai, N. Guo, Neural 3D reconstruction from sparse views using geometric priors, Comput. Visual Media 9, 687–697 (2023) [Google Scholar]
  12. Q. Zhou, J. Zuo, W. Kang, M. Ren, High-precision 3D reconstruction in complex scenes via implicit surface reconstruction enhanced by multi-sensor data fusion, Sensors 25, 2820–2841 (2025) [Google Scholar]
  13. N. Luo, L. Huang, Q. Wang, G. Liu, An improved algorithm robust to illumination variations for reconstructing point cloud models from images, Remote Sens. 13, 567–588 (2021) [Google Scholar]
  14. T. Madeira, M. Oliveira, P. Dias, Neural colour correction for indoor 3D reconstruction using RGB-D data, Sensors (Basel, Switzerland) 24, 4141–4152 (2024) [Google Scholar]
  15. G. Nayak Seetanadi, K.E. Årzen, M. Maggio, Control-based event-driven bandwidth allocation scheme for video-surveillance systems, Cyber-Phys. Syst. 8, 111–137 (2021) [Google Scholar]
  16. B. Yogi, S. Roy, A.K. Khan et al., IELTSoC: enhanced image encryption using combined logistic and Tinkerbell maps with second order cellular automata for internet of things, Discov. Internet Things 5, 78 (2025) [Google Scholar]
  17. H. Jianfeng et al., Enhanced YOLOv11 for image-based anomaly detection in freight train gate chains, Int. J. Intell. Inform. Technolog. 21, 1–18 (2025) [Google Scholar]
  18. P. Velagapalli, N. Parveen, Concurrent attentional reconstruction network for 3D point cloud reconstruction from single image, Appl. Soft Comput. 172, 112821 (2025) [Google Scholar]
  19. B. Cui, W. Tao, H. Zhao, High-precision 3D reconstruction for small-to-medium-sized objects utilizing line-structured light scanning: a review, Remote Sens. 13, 4457–4490 (2021) [Google Scholar]
  20. Z. Hong, Y. Yang, J. Liu, S. Jiang, H. Pan, R. Zhou, C. Zhong, Enhancing 3D reconstruction model by deep learning and its application in building damage assessment after earthquake, Appl. Sci. 12, 9790–9804 (2022) [Google Scholar]
  21. J.T.S. Phang, K.H. Lim, R.C.W. Chiong, A review of three dimensional reconstruction techniques, Multimedia Tools Appl. 80, 17879–17891 (2021) [Google Scholar]
  22. K. Fu, J. Peng, Q. He, H. Zhang, Single image 3D object reconstruction based on deep learning: a review, Multimedia Tools Appl. 80, 463–498 (2021) [Google Scholar]
  23. Y. Lee, Three-dimensional dense reconstruction: a review of algorithms and datasets, Sensors 24, 5861–5882 (2024) [Google Scholar]
  24. X. Zhang, Z. Zheng, D. Gao, B. Zhang, Y. Yang, T.S. Chua, Multi-view consistent generative adversarial networks for compositional 3d-aware image synthesis, Int. J. Computer Vision 131, 2219–2242 (2023) [Google Scholar]
  25. L. Zhou, Z. Zhang, H. Jiang, H. Sun, H. Bao, G. Zhang, DP-MVS: detail preserving multi-view surface reconstruction of large-scale scenes, Remote Sens. 13, 4569–4589 (2021) [NASA ADS] [CrossRef] [Google Scholar]
  26. V. Leroy, J.S. Franco, E. Boyer, Volume sweeping: learning photoconsistency for multi-view shape reconstruction, Int. J. Comput. Vision 129, 284–299 (2021) [Google Scholar]
  27. H. Zhang, Y. Zhang, L. Zhu, W. Lin, Deep learning-based perceptual video quality enhancement for 3D synthesized view, IEEE Trans. Circ. Syst. Video Technol. 32, 5080–5094 (2022) [Google Scholar]
  28. Z. Xia, Q. Han, Y. Zhang, Y. Zhang, F. Hu, Objective quantification of dynamic spatial distortions for enhanced realism in virtual environments, Virtual Real. 29, 1–10 (2025) [Google Scholar]
  29. S. Coskun, G. Nur Yilmaz, F. Battisti, M. Alhussein, S. Islam, Measuring 3D video quality of experience (QoE) using a hybrid metric based on spatial resolution and depth cues, J. Imag. 9, 281–309 (2023) [Google Scholar]
  30. L. Shen, Y. Yao, X. Geng, R. Fang, D. Wu, A novel no-reference quality assessment metric for stereoscopic images with consideration of comprehensive 3D quality information, Sensors 23, 6230–6254 (2023) [Google Scholar]
  31. S. Jiang, K. You, Y. Li, D. Weng, W. Chen, 3D reconstruction of spherical images: a review of techniques, applications, and prospects, Geo-spatial Inform. Sci. 27, 1959–1988 (2024) [Google Scholar]
  32. W. Zhou, L. Yuan, T. Mu, Multi3D: 3D-aware multimodal image synthesis, Comput. Visual Media 10, 1205–1217 (2024) [Google Scholar]
  33. Q. Jia, L. Chang, B. Qiang, S. Zhang, W. Xie, X. Yang, M. Yang, Real-time 3D reconstruction method based on monocular vision, Sensors 21, 5909–5926 (2021) [Google Scholar]
  34. F.E. Fadzli, A.W. Ismail, S. Abd Karim, M.N.A. Nor’a Ishigaki, M.Y.F. Aladin, Real-time 3D reconstruction method for holographic telepresence, Appl. Sci. 12, 4009–4024 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.