Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 14, 2023
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2023014
Published online 19 September 2023
  1. S. Joshi, A review on sustainable supply chain network design: dimensions, paradigms, concepts, framework and future directions, Sust. Operat. Comput. 3, 136–148 (2022) [Google Scholar]
  2. R. Boyle, Supply chain network optimization boosts visibility, cuts costs, Supply Chain Brain 26, 43 (2022) [Google Scholar]
  3. S. Salehi, Y.Z. Mehrjerdi, A. Sadegheih, H. Hosseini-Nasab, Designing a resilient and sustainable biomass supply chain network through the optimization approach under uncertainty and the disruption, J. Clean. Prod. 359, 1–29 (2022) [Google Scholar]
  4. Y. Kazancoglu, D. Yuksel, M.D. Sezer, S.K. Mangla, L. Hua, A green dual-channel closed-loop supply chain network design model, J. Clean. Prod. 332, 1–15 (2022) [Google Scholar]
  5. M.S. Al-Ashhab, O.M. Nabil, N.H. Afia, Perishable products supply chain network design with sustainability, Ind. J. Sci. Technol. 14, 787–800 (2021) [CrossRef] [Google Scholar]
  6. M.A. Quddus, S. Chowdhury, M. Marufuzzaman, F. Yu, L. Bian, A two-stage chance-constrained stochastic programming model for a bio-fuel supply chain network, Int. J. Prod. Econ. 195, 27–44 (2018) [CrossRef] [Google Scholar]
  7. G. Agac, B. Baki, I.M. Ar, H.T. Kahraman, A supply chain network design for blood and its products using genetic algorithm: a case study of Turkey, J. Ind. Manag. Optim. 19, 5407–5446 (2023) [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Baghizadeh, N. Cheikhrouhou, K. Govindan, M. Ziyarati, Sustainable agriculture supply chain network design considering water‐energy‐food nexus using queuing system: a hybrid robust possibilistic programming, Nat. Resour. Model. 35, 1–39 (2022) [CrossRef] [Google Scholar]
  9. R.B. Setiyawan, I.N. Pujawan, N.I. Arvitrida, Supply chain network design to adjust with acquisition of competitor: case study of a cement company in Indonesia, IOP Conf. Ser. Mater. Sci. Eng. 1072, 1–15 (2021) [Google Scholar]
  10. K. Tikito, S. Achchab, Y. Benadada, R. Ellaia, Optimization of warehousing and transportation costs, in a multi-product multi-level supply chain system, under a stochastic demand, Int. J. Simul. Multidiscipl. Des. Optim. 4, 1–5 (2010) [CrossRef] [EDP Sciences] [Google Scholar]
  11. B. Gonzalez, G. Winter, J.M. Emperador, B. Galvan, Minimum-cost planning of the multimodal transport of pipes with evolutionary computation, Int. J. Simul. Multidiscipl. Des. Optim. 3, 401–405 (2009) [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. Z. Namazian, R.K. Mavi, Pharmaceutical supply chain network and competitive distributor location, Int. J. Serv. Operat. Manag. 42, 151–175 (2022) [Google Scholar]
  13. R. Kizys, J. Doering, A.A. Juan, O. Polat, L. Calvet, J. Panadero, A simheuristic algorithm for the portfolio optimization problem with random returns and noisy covariances, Comput. Oper. Res. 139, 105631 (2022) [CrossRef] [Google Scholar]
  14. L. Yin, J. Qiu, S. Gao, Biclustering of gene expression data using cuckoo search and genetic algorithm, Int. J. Pattern Recogn. 32, 1850039.1–1850039.31 (2018) [Google Scholar]
  15. A.K. John, K. Krishnakumar, Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm, Int. J. Simul. Multisci. Des. Optim. 8, 1–8 (2017) [Google Scholar]
  16. B. Sid, M. Domaszewski, F. Peyraut, An adjacency representation for structural topology optimization using genetic algorithm, Int. J. Simul. Multisci. Des. Optim. 1, 49–54 (2007) [CrossRef] [EDP Sciences] [Google Scholar]
  17. M.V. Pathan, S. Patsias, V.L. Tagarielli, A real-coded genetic algorithm for optimizing the damping response of composite laminates, Comput. Struct. 198, 51–60 (2018) [CrossRef] [Google Scholar]
  18. A. Ketabi, M.H. Fini, Adaptive underfrequency load shedding using particle swarm optimization algorithm, J. Appl. Res. Technol. 15, 54–60 (2018) [Google Scholar]
  19. K. Bahar, Y. Mehran, A new optimized thresholding method using ant colony algorithm for MR brain image segmentation, J. Digit. Imaging, 32, 162–174 (2018) [Google Scholar]
  20. S. Singh, N.J. Singh, A. Gupta, System sizing of hybrid solar‐fuel cell battery energy system using artificial bee colony algorithm with predator effect, Int. J. Energ. Res. 46, 5847–5863 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.