Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 5, 2014
Article Number A20
Number of page(s) 6
DOI https://doi.org/10.1051/smdo/2013006
Published online 10 March 2014
  1. French S. 1982. Sequencing and scheduling: an introduction to the mathematics of the job-shop. Ellis Horwood Limited: Chichester, West Sussex, England, UK. [Google Scholar]
  2. Garey MR, Johnson DS, Sethi R. 1976. The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129. [CrossRef] [MathSciNet] [Google Scholar]
  3. Taillard E. 1993. Benchmarks for basic scheduling problems. European Journal of Operation Research, 64, 278–285. [CrossRef] [Google Scholar]
  4. Johnson SM. 1954. Optimal two-and three-stage production schedules with set up times include. Naval Research Logistics Quarterly, 1, 61–68. [CrossRef] [Google Scholar]
  5. Palmer DS. 1965. Sequencing jobs through a multistage process in the minimum total time – a quick method of obtaining near optimum. Operational Research Quarterly, 16, 101–107. [CrossRef] [Google Scholar]
  6. Campbell HG, Dudek RA, Smith ML. 1970. A heuristic algorithm for the n job m machine sequencing problem. Management Science, 16(10), B630–B637. [CrossRef] [Google Scholar]
  7. Navaz M, Enscore EE, Ham I. 1983. A heuristic algorithm for the m-machine n-job flow shop sequencing problem. Omega, 11, 91–95. [CrossRef] [Google Scholar]
  8. Widmer M, Hertz A. 1989. A new heuristic for the flow shop sequencing problem. European Journal of Operational Research, 41, 186–193. [CrossRef] [Google Scholar]
  9. Nowicki E, Smutnicki C. 1996. A fast Tabu search algorithm for the permutation flow shop problem. European Journal of Operations Research, 91, 160–175. [CrossRef] [Google Scholar]
  10. Moccellin JV, Santos MO. 2000. An adaptive hybrid meta-heuristic for permutation flow shop scheduling. Control and Cybernetics, 29(3), 761–771. [MathSciNet] [Google Scholar]
  11. Osman I, Potts C. 1989. Simulated annealing for permutation flow shop scheduling. OMEGA, 17(6), 551–557. [CrossRef] [Google Scholar]
  12. Chen CL, Vempati VS, Aljaber N. 1995. An application of genetic algorithms for flow shop problems. European Journal of Operational Research, 80, 389–396. [CrossRef] [Google Scholar]
  13. Low C. 2005. Simulated annealing heuristics for flow shop scheduling problems with unrelated parallel machines. Computers & Operations Research, 32(8), 2013–2025. [CrossRef] [Google Scholar]
  14. Ishibuchi H, Misaki S, Tanaka H. 1995. Modified simulated annealing algorithms for the flow shop sequencing problem. European Journal of Operational Research, 81(2), 388–398. [CrossRef] [Google Scholar]
  15. Reeves C. 1995. A genetic algorithm for flow shop sequencing. Computers and Operations Research, 22(1), 5–13. [CrossRef] [Google Scholar]
  16. Chen CL, Vempati VS, Aljaber N. 1995. An application of genetic algorithms for flow shop problems. European Journal of Operational Research, 80, 389–396. [CrossRef] [Google Scholar]
  17. Zobolas GI, Tarantilis CD, Ioannou G. 2009. Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm. Computers & Operations Research, 36(4), 1249–1267. [CrossRef] [MathSciNet] [Google Scholar]
  18. Yagmahan B, Yenisey MM. 2008. Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54, 411–420. [CrossRef] [Google Scholar]
  19. Rajendran C. 1995. Theory and methodology heuristics for scheduling in flow shop with multiple objectives. European Journal of Operational Research, 82, 540–555. [CrossRef] [Google Scholar]
  20. Koulamas C. 1998. A new constructive heuristic for the flow shop scheduling problem. European Journal of Operational Research Society, 105, 66–71. [CrossRef] [Google Scholar]
  21. Suliman S. 2000. A two-phase heuristic approach to the permutation flow-shop scheduling problem. International Journal of Production Economics, 64, 143–152. [CrossRef] [Google Scholar]
  22. Duda J. 2006. Local search and nature based metaheuristics: a case of flow shop scheduling problem, in Proceedings of the International multiconference on Computer Science and Information Technology, PIPS. p. 17–24, ISSN 1896-7094. [Google Scholar]
  23. Allahverdi A, Fawaz S, Anzi A. 2006. A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Computers & Operations Research, 33(4), 1056–1080. [CrossRef] [Google Scholar]
  24. Lian Z, Gu X, Jiao B. 2008. A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos, Solitons & Fractals, 35(5), 851–861. [CrossRef] [Google Scholar]
  25. Kuo IH, Horng SJ, Kao TW, Lin TL, Fan P. 2007. An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model, in IEA/AIE 2007, LNAI 4570, Okuno HG, Ali M, Editors. Springer-Verlag: Berlin, Heidelberg. p. 03–312. [Google Scholar]
  26. Liu B, Wang L, Jin Y. 2005. Hybrid particle swarm optimization for flow shop scheduling with stochastic processing time, in CIS 2005, Part I, LNAI 3801, Hao Y, et al., Editor. Springer-Verlag: Berlin, Heidelberg. p. 630–637. [Google Scholar]
  27. Chen Q. 2010. Flow shop scheduling using an improved PSO, vol. 2, in International Conference on Measuring Technology and Mechatronics Automation. p. 296–299 . [CrossRef] [Google Scholar]
  28. Sha DY, Lin HH. 2009. A particle swarm optimization for multi-objective flow shop scheduling. International Journal of Advanced Manufacturing Technology, 45, 749–758. [CrossRef] [Google Scholar]
  29. Zhang C, Ning J, Ouyang D. 2010. A hybrid alternative two phases particle swarm optimization algorithm for flow shop scheduling problem. Computers & Industrial Engineering, 58(1), 1–11. [CrossRef] [Google Scholar]
  30. Deb K. 2007. Current trends in evolutionary multi-objective optimization. International Journal for Simulation and Multidisciplinary Design Optimization, 1, 1–8. [CrossRef] [EDP Sciences] [Google Scholar]
  31. Hansen P, Mladenovíc N. 1997. Variable neighborhood search for the p-median. Location Science, 5, 207–226. [CrossRef] [Google Scholar]
  32. Kennedy J, Eberhart RC. 1995. Particle swam optimization, in Roc. IEEE International Conference on Neural Networks (Path, Australia). IEEE Service Center: Piscataway, NJ. p. 1942–1948, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.