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Abstract – In a short span of about 14 years, evolutionary multi-objective optimization (EMO) has estab-
lished itself as a mature field of research and application with an extensive literature, many commercial
softwares, numerous freely downloadable codes, a dedicated biannual conference running successfully four
times so far since 2001, special sessions and workshops held at all major evolutionary computing confer-
ences, and full-time researchers from universities and industries from all around the globe. In this paper,
we make a brief outline of EMO principles, some EMO algorithms, and focus on current research and
application potential of EMO. Besides, simply finding a set of Pareto-optimal solutions, EMO research
has now diversified in hybridizing its search with multi-criterion decision-making tools to arrive at a single
preferred solution, in utilizing EMO principle in solving different kinds of single-objective optimization
problems efficiently, and in various interesting application domains which were not possible to be solved
adequately due to the lack of a suitable solution technique.

1 Introduction

Evolutionary optimization (EO) methodologies are now
popularly used in various problem solving tasks involv-
ing nonlinearities, large dimensionality, non-differentiable
functions, non-convexity, multiple optima, multiple ob-
jectives, uncertainties in decision and problem parame-
ters, large computational overheads, and various other
complexities for which the classical optimization method-
ologies are known to be vulnerable. In a recent survey
conducted before the World Congress on Computational
Intelligence (WCCI) in Vancouver 2006, the evolutionary
multi-objective optimization (EMO) field was judged as
one of the three fastest growing field of research and ap-
plication among all computational intelligence topics. For
solving single-objective optimization problems or in other
tasks focusing to find a single optimal solution, the use
of a population of solutions in each iteration may at first
seem like an overkill; in solving multi-objective optimiza-
tion problems an EO procedure is a perfect fit [13]. The
multi-objective optimization problems, by theory, give
rise to a set of Pareto-optimal solutions which need a fur-
ther processing to arrive at a single preferred solution. To
achieve the first task, it becomes quite a natural proposi-
tion to use a modified EO, because the use of population
in an iteration helps an EO to simultaneously find multi-
ple Pareto-optimal solutions in a single simulation run.

In this paper, we briefly describe the principles of
EMO and then discuss a few well-known computational
procedures. Thereafter, we highlight the current interest
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of research and application of EMO. It is clear from the
discussions that EMO is not only being found to be use-
ful in solving multi-objective optimization problems, it is
also helping to solve other kinds of optimization problems
in a manner better than they are traditionally solved.
As a by-product, EMO-based solutions are helping to re-
veal important hidden knowledge about a problem – a
matter which is difficult to achieve otherwise. This paper
should motivate interested readers to look into the exten-
sive EMO literature indicated in the reference list and in
appendix for more details.

2 Evolutionary Multi-objective Optimization
(EMO)

As in the single-objective optimization problem, the
multi-objective optimization problem usually has a num-
ber of constraints which any feasible solution (including
the optimal solution) must satisfy:

Minimize/Maximizefm(x), m = 1, 2, . . . , M ;
subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K;
x

(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n.

⎫⎪⎪⎬
⎪⎪⎭

(1)
A solution x is a vector of n decision variables: x =
(x1, x2, . . . , xn)T . The last set of constraints are called
variable bounds, restricting each decision variable xi to
take a value within a lower x

(L)
i and an upper x

(U)
i bound.

Different solutions may produce trade-offs (conflicting
scenarios) among different objectives. A solution that is
extreme (in a better sense) with respect to one objective
requires a compromise in other objectives. This prohibits
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one to choose a solution which is optimal with respect to
only one objective. This clearly introduces two main goals
of multi-objective optimization:

1. Find a set of solutions close to the optimal solutions,
and

2. Find a set of solutions which are diverse enough to
represent the true spread of optimal solutions.

Evolutionary multi-objective optimization (EMO) algo-
rithms follow both the above principles more directly than
their existing counterparts.

From a practical standpoint, a user needs only one
solution, no matter whether the associated optimization
problem is single-objective or multi-objective. In the case
of multi-objective optimization, the user is now in a
dilemma. Since a number of solutions are optimal, the
obvious question arises: Which of these optimal solutions
must one choose? This is not an easy question to an-
swer. It involves many higher-level information which are
often non-technical, qualitative and experience-driven.
However, if a set of many trade-off solutions are already
worked out or available, one can evaluate the pros and
cons of each of these solutions based on all such non-
technical and qualitative, yet still important, considera-
tions and compare them to make a choice. Thus, in a
multi-objective optimization, ideally the effort must be
made in finding the set of trade-off optimal solutions by
considering all objectives to be important. After a set of
such trade-off solutions are found, a user can then use
higher-level qualitative considerations to make a choice.
In view of these discussions, the following principles are
used in evolutionary multi-objective optimization (EMO)
procedures:

Step 1 Find multiple trade-off optimal solutions with a
wide range of values for objectives.

Step 2 Choose one of the obtained solutions using higher-
level information.

3 State-of-the-art EMO methodologies

A number of non-elitist EMO methodologies [23, 26, 39]
gave a good head-start to the research and application
of EMO, but suffered from the fact that they did not
use an important operator – an elite-preservation mech-
anism – in their procedures. An addition of elitism in
an EO provides a monotonically non-degrading perfor-
mance. The next-level EMO algorithms implemented an
elite-preserving operator in different ways and gave birth
to elitist EMO procedures, some of which we describe in
the following subsections.

3.1 Elitist non-dominated sorting GA or NSGA-II

The NSGA-II procedure [14] for finding multiple Pareto-
optimal solutions in a multi-objective optimization prob-
lem has the following three features: (i) it uses an elitist
principle, (ii) it uses an explicit diversity preserving mech-
anism, and (iii) it emphasizes non-dominated solutions. In

Fig. 1. Schematic of the NSGA-II procedure.

NSGA-II, the offspring population Qt is first created by
using the parent population Pt and the usual evolutionary
operators. Thereafter, the two populations are combined
together to form Rt of size 2N . Then, a non-dominated
sorting is used to classify the entire population Rt. Once
the non-dominated sorting is over, the new population is
filled by solutions of different non-dominated fronts, one
at a time. The filling starts with the best non-dominated
front and continues with solutions of the second non-
dominated front, followed by the third non-dominated
front, and so on. Since the overall population size of Rt

is 2N , not all fronts can be accommodated in N slots
available in the new population. All fronts which could
not be accommodated are simply deleted. When the last
allowed front is being considered, there may exist more
solutions in the last front than the remaining slots in the
new population. This scenario is illustrated in Figure 1.
Instead of arbitrarily discarding some members from the
last front, the solutions which will make the diversity of
the selected solutions the highest are chosen.

Due to the simplicity and efficient usage of its
operators, NSGA-II procedure is probably the most
popular EMO procedure today. A C code implement-
ing the procedure is available from author’s web site
http://www.iitk.ac.in/kangal/soft.htm.

3.2 Strength Pareto EA (SPEA) and SPEA2

Zitzler and Thiele [44] suggested an elitist multi-criterion
EA with the concept of non-domination in their strength
Pareto EA (SPEA). They suggested maintaining an ex-
ternal population at every generation storing all non-
dominated solutions discovered so far beginning from the
initial population. This external population participates
in evolutionary operations. At each generation, a com-
bined population with the external and the current pop-
ulation is first constructed. All non-dominated solutions
in the combined population are assigned a fitness based
on the number of solutions they dominate. To maintain
diversity and in the context of minimizing the fitness
function, they assigned a higher fitness value to a non-
dominated solution having more dominated solutions in
the combined population. On the other hand, a higher



K. Deb: Current trends in evolutionary multi-objective optimization 3

fitness is also assigned to solutions dominated by more
solutions in the combined population. Care is taken to as-
sign no non-dominated solution a fitness worse than that
of the best dominated solution. This assignment of fitness
makes sure that the search is directed towards the non-
dominated solutions and simultaneously diversity among
dominated and non-dominated solution are maintained.
On knapsack problems, they have reported better results
than other methods used in that study.

In their subsequent improved version (SPEA2) [43],
three changes have been made. First, the archive size is
always kept fixed (thus if there are fewer non-dominated
solutions in the archive than the predefined archive size,
dominated solutions from the EA population are copied
to the archive). Second, a fine-grained fitness assignment
strategy is used in which fitness assignment to the domi-
nated solutions are slightly different and a density infor-
mation is used to resolve the tie between solutions having
identical fitness values. Third, a modified clustering algo-
rithm is used with k-th nearest neighbor distance measure
and special attention is made to preserve the boundary
elements.

3.3 Pareto Archived ES (PAES) and Pareto Envelope
based Selection Algorithms (PESA and PESA2)

Knowles and Corne [28] suggested a simple possible EMO
using evolution strategy (ES). In their Pareto-archived
ES (PAES) with one parent and one child, the child is
compared with respect to the parent. If the child domi-
nates the parent, the child is accepted as the next parent
and the iteration continues. On the other hand, if the
parent dominates the child, the child is discarded and a
new mutated solution (a new child) is found. However,
if the child and the parent do not dominate each other,
the choice of child or a parent considers the second task of
keeping diversity among obtained solutions using a crowd-
ing procedure. To maintain diversity, an archive of non-
dominated solutions found so far is maintained. The child
is compared with the archive to check if it dominates any
member of the archive. If yes, the child is accepted as
the new parent and the dominated solution is eliminated
from the archive. If the child does not dominate any mem-
ber of the archive, both parent and child are checked for
their nearness with the solutions of the archive. If the
child resides in a least crowded region in the parameter
space among the members of the archive, it is accepted
as a parent and a copy of added to the archive. It is in-
teresting to note that both features of (i) emphasizing
non-dominated solutions, and (ii) maintaining diversity
among non-dominated solutions are present in this sim-
ple algorithm. Later, they suggested a multi-parent PAES
with similar principles as above.

In their subsequent version, they called Pareto En-
velope based Selection Algorithm (PESA) [9], they
combined good aspects of SPEA and PAES. Like
SPEA, PESA carries two populations (an EA popula-
tion and a comparatively larger archive population). Non-

domination and the PAES’s crowding concept is used to
update the archive with the newly created child solutions.

In an extended version of PESA (or PESA2) [10],
instead of applying the selection procedure on popula-
tion members, hyperboxes in the objective space are se-
lected based on the number of residing solutions in the
hyperboxes. After hyperboxes are selected, a random so-
lution from the chosen hyperboxes is kept. This region-
based selection procedure has shown to perform better
than individual-based selection procedure of PESA. In
some sense, PESA2 selection scheme is similar in concept
to the ε-dominance in which predefined ε values deter-
mine the hyperbox dimensions. Other ε-dominance based
EMO procedures [18, 30] have shown to be computation-
ally faster and to better distribute solutions than NSGA-
II or SPEA2.

There also exist other competent EMOs, such
as multi-objective messy GA (MOMGA) [41], multi-
objective micro-GA [6], neighborhood constraint GA [31],
ARMOGA [36], and others. Besides, there exists other EA
based methodologies, such as particle swarm EMO [7,35],
ant-based EMO [24, 33], and differential evolution based
EMO [1].

4 Constraint handling in EMO

The constraint handling method modifies the domination
principle. In the presence of constraints, each solution
can be either feasible or infeasible. Thus, there may be
at most three situations: (i) both solutions are feasible,
(ii) one is feasible and other is not, and (iii) both are in-
feasible. We consider each case by simply redefining the
domination principle as follows. A solution x(i) is said to
‘constrain-dominate’ a solution x(j), if any of the follow-
ing conditions are true: (i) solution x(i) is feasible and
solution x(j) is not, or (ii) solutions x(i) and x(j) are both
infeasible, but solution x(i) has a smaller constraint vi-
olation, or (iii) solutions x(i) and x(j) are feasible and
solution x(i) dominates solution x(j) in the usual sense.
The above change in the definition requires a minimal
change in the NSGA-II or other EMO procedures de-
scribed earlier. Figure 2 shows the non-dominated fronts
on a six-membered population due to the introduction
of two constraints. In the absence of the constraints, the
non-dominated fronts (shown by dashed lines) would have
been ((1,3,5), (2,6), (4)), but in their presence, the
new fronts are ((4,5), (6), (2), (1), (3)). The first
non-dominated front is constituted with the best infeasi-
ble solutions in the population and any feasible solution
lies on a better non-dominated front than an feasible so-
lution. This simple modification in domination principle
allows to form an appropriate hierarchy among solutions
in the population for them to move towards the true con-
strained Pareto-optimal front.

5 Current EMO research and practices

With the fast development of efficient EMO procedures,
availability of free and commercial softwares (some of
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Fig. 2. Non-constrain-dominated fronts.

which are described in the Appendix), and applications
to a wide variety of problems, EMO research and appli-
cation is in its peak at the current time. It is difficult to
cover every aspect of current research in a single paper.
Here, we outline three main broad areas of research and
application.

5.1 EMO and decision-making

It is important here to note that finding a set of Pareto-
optimal solutions by using an EMO is only a part of multi-
objective optimization, as choosing a particular solution
for implementation is the remaining decision-making task
which is also an equally important task. In the view of the
author, the decision-making task can be considered from
two main aspects:

1. Generic consideration: There are some aspects
which most practical users would like to use in nar-
rowing down their choice. For example, in the presence
of uncertainties in decision variables and/or problem
parameters, the users are usually interested in find-
ing robust solutions which are relatively insensitive to
the variation in decision variables or parameters. In
the presence of such variations, no one is interested in
Pareto-optimal but sensitive solutions. Practitioners
do not hesitate sacrificing globally optimal solutions
in order to achieve robust solutions which lie on rela-
tively flat part of the objective function or away from
the constraint boundaries. In such scenarios, instead of
finding the globally Pareto-optimal front, the user may
be interested in finding the robust frontier which may
be partially or totally different from the true Pareto-
optimal front. A robust EMO procedure [15] is shown
to find only those Pareto-optimal solutions or solu-
tions close to them which are robust and insensitive
to parameter and variable perturbations.
In addition, instead of finding the entire Pareto-
optimal front, the users may be interested in finding
some specific solutions on the Pareto-optimal front,
such as knee points (requiring a large sacrifice in at
least one objective to achieve a small gain in another),

points having correlated relationship between objec-
tives to decision variables (identifying the portion
of the Pareto-optimal front which possesses simpler
relationship between objective values and decision
variable values), points having multiplicity (finding
Pareto-optimal solutions corresponding to multiple
(say at least two or more) decision variable vectors
but each having identical objective values), points for
which decision variable values are well within their
allowable bounds and not near their lower or upper
boundaries, points having some theoretical aspects
such as all Lagrange multipliers having more or less
identical magnitube (condition for having equal im-
portance to each constraint), and others. These con-
siderations are motivated from the fundamental and
practical aspects of optimization and may be applied
to most multi-objective problem solving tasks, with-
out any consent of a decision-maker.

2. Subjective consideration: In this category, any
problem-specific information can be used to narrow
down the choices and the process may even lead to
a single preferred solution at the end. Most decision-
making procedures use some preference information
(utility functions, reference point approaches [42], ref-
erence direction approaches [29], marginal rate of re-
turn and a host of other considerations [34]) to select
a subset of Pareto-optimal solutions. A recent book
is dedicated to the discussions of many such multiple
criteria decision making (MCDM) tools and collabo-
rative suggestions of using EMO with such MCDM
tools [4]. Some hybrid EMO and MCDM algorithms
are also suggested in the recent past [16,17,22,32,40].

5.2 Multi-objectivization

Interestingly, the act of finding multiple Pareto-optimal
solutions using an EMO procedure has found its appli-
cation outside the realm of solving multi-objective opti-
mization problems per se. The concept of finding optimal
trade-off solutions are applied to solve other kinds of opti-
mization problems as well. For example, the EMO concept
is used to solve constrained single-objective optimiza-
tion problems by converting the task as a two-objective
optimization task of additionally minimizing an aggre-
gate constraint violation [8]. This eliminated the need of
having any penalty parameter. If viewed this way, the
usual penalty function approach used in the classical op-
timization studies is a special weighted-sum approach to
the bi-objective optimization problem of minimizing the
objective function and minimizing the constraint viola-
tion, for which the weight vector is a function of penalty
parameter. The reduction of a well-known difficulty in
the genetic programming studies, called the ‘bloating’, by
minimizing the size of programs as an additional objec-
tive helped find high-performing solutions with a smaller
size of the code [2]. Minimizing the intra-cluster distance
and maximizing inter-cluster distance simultaneously in a
bi-objective formulation of a clustering problem is found
to yield better solutions than the usual single-objective
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minimization of the ratio of the intra-cluster distance to
the inter-cluster distance [25]. A recent edited book [27]
describes many such interesting applications in which
EMO methodologies have help shown problems which are
otherwise (or traditionally) not treated as multi-objective
optimization problems.

5.3 Applications

EMO methodologies are being and must be applied to
more interesting real-world problems to demonstrate the
utility of finding multiple trade-off solutions. Although
some recent studies are finding that EMO procedures
are not computationally efficient to find multiple and
widely distributed set of solutions on problems having
a large number of objectives (more than five objectives
or so) [11, 20], EMO procedures are still applicable in
very large problems if the attention is changed to find
a preferred region on the Pareto-optimal front, instead
of the complete front. Some such preference based EMO
studies [3, 16, 22] are applied to 10 or more objectives.
In certain many-objective problems, the Pareto-optimal
front can be low-dimensional mainly due to the pres-
ence of redundant objectives and EMO procedures can
again be effective in solving such problems [5, 20, 37]. In
addition, the use of reliability based EMO [12, 19] and
robust EMO [15] procedures are ready to be applied to
real-world multi-objective design optimization problems.
Application studies are also of interest from the point of
demonstrating how an EMO procedure and a subsequent
MCDM approach can be combined in an iterative manner
together to solve a multi-objective optimization problem.
Such efforts may lead to development of GUI-based soft-
wares and approaches for solving the task and will require
addressing other important issues such as visualization of
multi-dimensional data, parallel implementation of EMO
and MCDM procedures, meta-modeling approaches, and
others.

Besides solving real-world multi-objective optimiza-
tion problems, EMO procedures are also found to be
useful for a knowledge discovery task related to a bet-
ter understanding of the problem. After a set of trade-off
solutions are found by an EMO, these solutions can be
compared against each other to unveil interesting princi-
ples which lie common to all these solutions. These com-
mon properties among high-performing solutions will pro-
vide useful insights about what makes a solution optimal
in a particular problem. Also, investigating what proper-
ties are not common may provide information about what
makes the solutions to differ from each other. Such use-
ful information mined from the obtained EMO trade-off
solutions were discovered in many real-world engineering
design problems in the recent past [21] and the task of
unveiling useful knowledge about a problem is termed as
the task of ‘innovization’ in that study. The task is simi-
lar in concept to the product platform design task which
uses multiple optimizations and statistical tools [38], but
provides a systematic and direct mean of discovering com-
mon principles through optimization.

6 Conclusions

This paper has provided a brief introduction and current
research focus to a fast-growing field of multi-objective
optimization based on evolutionary algorithms. The EMO
principle of solving multi-objective optimization has been
to first find a set of Pareto-optimal solutions and then
choose a preferred solution. Since an EO uses a popula-
tion of solutions in each iteration, EO procedures are po-
tentially viable techniques to find and capture a number
of Pareto-optimal solutions in a single simulation run.

Besides their routine applications in solving multi-
objective optimization problems, EMO has spread its
wings in aiding other types of optimization problems,
such as single-objective constrained optimization, clus-
tering problems etc. EMO has been used to unveil im-
portant hidden knowledge about what makes a solution
optimal. EMO techniques are increasingly being found to
have tremendous potential to be used in conjunction with
multiple criteria decision making (MCDM) tasks in not
only finding a set of optimal solutions but also to aid in
selecting a preferred solution at the end. In the reference
and appendix sections, we provide some useful informa-
tion about the EMO research, so that interested readers
can get exposed to and involved with the vast literature
of EMO.
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Appendix: EMO Repository

Here, we outline some dedicated literature in the area of
multi-objective optimization. Further details can be found
in the reference section.

Books in Print

– A. Abraham, L.C. Jain, R. Goldberg. Evolution-
ary Multiobjective Optimization: Theoretical Advances
and Applications, London: Springer-Verlag, 2005.
This is a collection of the latest state-of-the-art theo-
retical research, design challenges and applications in
the field of EMO.

– C.A.C. Coello, D.A. VanVeldhuizen, G. Lamont.
Evolutionary Algorithms for Solving Multi-Objective
Problems. Boston, MA: Kluwer Academic Publishers,
2002.
A good reference book with a good citation of most
EMO studies. A revised version is in print.

– K. Deb. Multi-objective optimization using evolution-
ary algorithms. Chichester, UK: Wiley, 2001. (Third
edition, with exercise problems)
A comprehensive text-book introducing the EMO field
and describing major EMO methodologies and salient
research directions.

– A. Osyczka. Evolutionary algorithms for single
and multicriteria design optimisation, Heidelberg:
Physica-Verlag, 2002.
A book describing single and multi-objective EAs with
many engineering applications.

– Y. Collette and P. Siarry. Multiobjective Optimization:
Principles and Case Studies, Berlin: Springer, 2004.
This book describes multi-objective optimization
methods including EMO and decision-making, and a
number of engineering case studies.

– N. Nedjah and L. de Macedo Mourelle (Eds.).
Real-World Multi-Objective System Engineering, New
York: Nova Science Publishers, 2005.
This edited book discusses recent developments and
application of multi-objective optimization including
EMO.

– M. Sakawa. Genetic Algorithms and Fuzzy Multiobjec-
tive Optimization, Norwell, MA: Kluwer, 2002.
This book discusses EMO for 0-1 programming, inte-
ger programming, nonconvex programming, and job-
shop scheduling problems under multiobjectiveness
and fuzziness.

– K.C. Tan, E.F. Khor, T.H. Lee. Multiobjective Evo-
lutionary Algorithms and Applications, London, UK:
Springer-Verlag, 2005.
A book on various methods of preference-based EMO
and application case studies covering areas such as
control and scheduling.

Some Review Papers

– C.A.C. Coello. Evolutionary Multi-Objective Opti-
mization: A Critical Review. In R. Sarker, M. Moham-
madian and X. Yao (Eds), Evolutionary Optimization,
pp. 117–146, Kluwer Academic Publishers, New York,
2002.

– C. Dimopoulos. A Review of Evolutionary Multiobjec-
tive Optimization Applications in the Area of Produc-
tion Research. 2004 Congress on Evolutionary Com-
putation (CEC’2004), IEEE Service Center, Vol. 2,
pp. 1487–1494, 2004.

– S. Huband, P. Hingston, L. Barone and L. While.
A Review of Multiobjective Test Problems and
a Scalable Test Problem Toolkit, IEEE Transac-
tions on Evolutionary Computation, Vol. 10, No. 5,
pp. 477–506, 2006.

Dedicated Conference Proceedings

– S. Obayashi, K. Deb, C. Poloni, and T. Hiroyasu
(Eds.)., Evolutionary Multi-Criterion Optimization
(EMO-07) Conference Proceedings, Also available as
LNCS 4403. Berlin, Germany: Springer, 2007.

– C.A.C. Coello, A.H. Aguirre, E. Zitzler (Eds.), Evolu-
tionary Multi-Criterion Optimization (EMO-05) Con-
ference Proceedings, Also available as LNCS 3410.
Berlin, Germany: Springer, 2005.

– Fonseca, C., Fleming, F., Zitzler, E., Deb, K., and
Thiele, L. (Eds.), Evolutionary Multi-Criterion Op-
timization (EMO-03) Conference Proceedings. Also
available as LNCS 2632. Heidelberg: Springer, 2003.
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– Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C. and
Corne, D. (Eds.), Evolutionary Multi-Criterion Op-
timization (EMO-01) Conference Proceedings, Also
available as LNCS 1993. Heidelberg: Springer, 2001.

– GECCO (LNCS series of Springer) and CEC (IEEE
Press) annual conference proceedings feature numer-
ous research papers on EMO theory, implementation,
and applications.

Mailing lists

– emo-list@ualg.pt (EMO methodologies)
– MCRIT-L@LISTSERV.UGA.EDU (MCDM method-

ologies)

Public-domain source codes

– NIMBUS: http://www.mit.jyu.fi/MCDM/soft.html

– NSGA-II in C: http://www.iitk.ac.in/kangal/
soft.htm+

– PISA: http://www.tik.ee.ethz.ch/sop/pisa/
– SPEA2 in C++: http://www.tik.ee.ethz.ch/

zitzler+
– shark in C++: http://shark-project.sourceforge.net
– Further information: http://www.lania.mx/

ccoello/EMOO/+

Commercial codes implementing EMO

– iSIGHT and FIPER from Engineous
(http://www.engineous.com/)

– GEATbx in Matlab (http://www.geatbx.com/)
– MAX from CENAERO (http://www.cenaero.be/)
– modeFRONTIER from Esteco

(http://www.esteco.com/)


